Loading…
TSDNN: tube sorting with deep neural networks for surveillance video synopsis
High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces de...
Saved in:
Published in: | Multimedia tools and applications 2024-01, Vol.83 (24), p.65059-65076 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843 |
container_end_page | 65076 |
container_issue | 24 |
container_start_page | 65059 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Wang, Chenwu Wu, Junsheng Wang, Pei Chen, Hao Zhu, Zhixiang |
description | High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts. |
doi_str_mv | 10.1007/s11042-023-18091-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076829162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076829162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuu7cR22FB5SqUMlNlyYqekhDjYSR__nkCRYGI6dzjfudKH0CmFcwogLyKlkDACjBOqIKNks4dGNJWcSMno_p_7EB3FuASgImXJCD3On69ns0vc9bnD0YeuahZ4XXWv2DrX4sb1wdRDdGsf3iIufcCxDytX1bVpCodXlXUex23j21jFY3RQmjq6k58co5fbm_nknkyf7h4mV1NScJp1hDIhlZQgktJKZ3JjM5UWkDJjFE-NzZ0qTcZkoSyAFSZljuWCF1aIpKAq4WN0ttttg__oXez00vehGV5qDlIollHBhhbbtYrgYwyu1G2o3k3Yagr6S5veadODNv2tTW8GiO-gOJSbhQu_0_9QnwXEcNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076829162</pqid></control><display><type>article</type><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><source>Springer Nature</source><creator>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</creator><creatorcontrib>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</creatorcontrib><description>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-18091-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Guards ; Machine learning ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems ; Surveillance ; Tubes ; Unsupervised learning</subject><ispartof>Multimedia tools and applications, 2024-01, Vol.83 (24), p.65059-65076</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</citedby><cites>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</cites><orcidid>0000-0002-9091-971X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chenwu</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhu, Zhixiang</creatorcontrib><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Guards</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Surveillance</subject><subject>Tubes</subject><subject>Unsupervised learning</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuu7cR22FB5SqUMlNlyYqekhDjYSR__nkCRYGI6dzjfudKH0CmFcwogLyKlkDACjBOqIKNks4dGNJWcSMno_p_7EB3FuASgImXJCD3On69ns0vc9bnD0YeuahZ4XXWv2DrX4sb1wdRDdGsf3iIufcCxDytX1bVpCodXlXUex23j21jFY3RQmjq6k58co5fbm_nknkyf7h4mV1NScJp1hDIhlZQgktJKZ3JjM5UWkDJjFE-NzZ0qTcZkoSyAFSZljuWCF1aIpKAq4WN0ttttg__oXez00vehGV5qDlIollHBhhbbtYrgYwyu1G2o3k3Yagr6S5veadODNv2tTW8GiO-gOJSbhQu_0_9QnwXEcNs</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Wang, Chenwu</creator><creator>Wu, Junsheng</creator><creator>Wang, Pei</creator><creator>Chen, Hao</creator><creator>Zhu, Zhixiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9091-971X</orcidid></search><sort><creationdate>20240119</creationdate><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><author>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Guards</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Surveillance</topic><topic>Tubes</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chenwu</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhu, Zhixiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chenwu</au><au>Wu, Junsheng</au><au>Wang, Pei</au><au>Chen, Hao</au><au>Zhu, Zhixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-01-19</date><risdate>2024</risdate><volume>83</volume><issue>24</issue><spage>65059</spage><epage>65076</epage><pages>65059-65076</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-18091-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9091-971X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-01, Vol.83 (24), p.65059-65076 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3076829162 |
source | Springer Nature |
subjects | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Guards Machine learning Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Surveillance Tubes Unsupervised learning |
title | TSDNN: tube sorting with deep neural networks for surveillance video synopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSDNN:%20tube%20sorting%20with%20deep%20neural%20networks%20for%20surveillance%20video%20synopsis&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Chenwu&rft.date=2024-01-19&rft.volume=83&rft.issue=24&rft.spage=65059&rft.epage=65076&rft.pages=65059-65076&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-18091-x&rft_dat=%3Cproquest_cross%3E3076829162%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076829162&rft_id=info:pmid/&rfr_iscdi=true |