Loading…

TSDNN: tube sorting with deep neural networks for surveillance video synopsis

High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces de...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2024-01, Vol.83 (24), p.65059-65076
Main Authors: Wang, Chenwu, Wu, Junsheng, Wang, Pei, Chen, Hao, Zhu, Zhixiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843
cites cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843
container_end_page 65076
container_issue 24
container_start_page 65059
container_title Multimedia tools and applications
container_volume 83
creator Wang, Chenwu
Wu, Junsheng
Wang, Pei
Chen, Hao
Zhu, Zhixiang
description High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.
doi_str_mv 10.1007/s11042-023-18091-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076829162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076829162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuu7cR22FB5SqUMlNlyYqekhDjYSR__nkCRYGI6dzjfudKH0CmFcwogLyKlkDACjBOqIKNks4dGNJWcSMno_p_7EB3FuASgImXJCD3On69ns0vc9bnD0YeuahZ4XXWv2DrX4sb1wdRDdGsf3iIufcCxDytX1bVpCodXlXUex23j21jFY3RQmjq6k58co5fbm_nknkyf7h4mV1NScJp1hDIhlZQgktJKZ3JjM5UWkDJjFE-NzZ0qTcZkoSyAFSZljuWCF1aIpKAq4WN0ttttg__oXez00vehGV5qDlIollHBhhbbtYrgYwyu1G2o3k3Yagr6S5veadODNv2tTW8GiO-gOJSbhQu_0_9QnwXEcNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076829162</pqid></control><display><type>article</type><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><source>Springer Nature</source><creator>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</creator><creatorcontrib>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</creatorcontrib><description>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-18091-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Guards ; Machine learning ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems ; Surveillance ; Tubes ; Unsupervised learning</subject><ispartof>Multimedia tools and applications, 2024-01, Vol.83 (24), p.65059-65076</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</citedby><cites>FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</cites><orcidid>0000-0002-9091-971X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chenwu</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhu, Zhixiang</creatorcontrib><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Guards</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Surveillance</subject><subject>Tubes</subject><subject>Unsupervised learning</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuu7cR22FB5SqUMlNlyYqekhDjYSR__nkCRYGI6dzjfudKH0CmFcwogLyKlkDACjBOqIKNks4dGNJWcSMno_p_7EB3FuASgImXJCD3On69ns0vc9bnD0YeuahZ4XXWv2DrX4sb1wdRDdGsf3iIufcCxDytX1bVpCodXlXUex23j21jFY3RQmjq6k58co5fbm_nknkyf7h4mV1NScJp1hDIhlZQgktJKZ3JjM5UWkDJjFE-NzZ0qTcZkoSyAFSZljuWCF1aIpKAq4WN0ttttg__oXez00vehGV5qDlIollHBhhbbtYrgYwyu1G2o3k3Yagr6S5veadODNv2tTW8GiO-gOJSbhQu_0_9QnwXEcNs</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Wang, Chenwu</creator><creator>Wu, Junsheng</creator><creator>Wang, Pei</creator><creator>Chen, Hao</creator><creator>Zhu, Zhixiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9091-971X</orcidid></search><sort><creationdate>20240119</creationdate><title>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</title><author>Wang, Chenwu ; Wu, Junsheng ; Wang, Pei ; Chen, Hao ; Zhu, Zhixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Guards</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Surveillance</topic><topic>Tubes</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chenwu</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhu, Zhixiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chenwu</au><au>Wu, Junsheng</au><au>Wang, Pei</au><au>Chen, Hao</au><au>Zhu, Zhixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSDNN: tube sorting with deep neural networks for surveillance video synopsis</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-01-19</date><risdate>2024</risdate><volume>83</volume><issue>24</issue><spage>65059</spage><epage>65076</epage><pages>65059-65076</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>High-quality cameras collect a large amount of surveillance video that can be labor-consuming for security guards to browse and analyze. One way to ease the browsing burden is to condense a long surveillance video to a much shorter clip with the technology of video synopsis. This paper introduces deep neural networks to sort object tubes for video synopsis. To the best of our knowledge, this first deep learning-based approach for video synopsis. Our approach first estimates the static background and separates foreground objects from the video. The object tubes are then obtained after stacking the foreground areas of the same object. The tubes are then represented by deep features with a 3D CNN. Finally, a Transformer sorts the object tubes and gives the final locations of all tubes. Since our approach combines tube representation extraction with neural networks, we call our approach Tube Sorting with Deep Neural Networks (TSDNN). In addition, we optimize the network with unsupervised learning that utilizes activity, collision, and chronological losses. Experiments demonstrate that the proposed TSDNN produces condensed video with few collision and chronological disorder artifacts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-18091-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9091-971X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-01, Vol.83 (24), p.65059-65076
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_3076829162
source Springer Nature
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Guards
Machine learning
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Surveillance
Tubes
Unsupervised learning
title TSDNN: tube sorting with deep neural networks for surveillance video synopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSDNN:%20tube%20sorting%20with%20deep%20neural%20networks%20for%20surveillance%20video%20synopsis&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Chenwu&rft.date=2024-01-19&rft.volume=83&rft.issue=24&rft.spage=65059&rft.epage=65076&rft.pages=65059-65076&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-18091-x&rft_dat=%3Cproquest_cross%3E3076829162%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1267877064fd7eabad985c052aa835adbe8fa927c8d00d6a52e2b63cd664c1843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076829162&rft_id=info:pmid/&rfr_iscdi=true