Loading…

FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs

This report introduces FunAudioLLM, a model family designed to enhance natural voice interactions between humans and large language models (LLMs). At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and Cos...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: An, Keyu, Chen, Qian, Deng, Chong, Du, Zhihao, Gao, Changfeng, Gao, Zhifu, Gu, Yue, He, Ting, Hu, Hangrui, Hu, Kai, Ji, Shengpeng, Li, Yabin, Li, Zerui, Lu, Heng, Luo, Haoneng, Lv, Xiang, Ma, Bin, Ma, Ziyang, Ni, Chongjia, Song, Changhe, Shi, Jiaqi, Shi, Xian, Wang, Hao, Wang, Wen, Wang, Yuxuan, Xiao, Zhangyu, Yan, Zhijie, Yang, Yexin, Zhang, Bin, Zhang, Qinglin, Zhang, Shiliang, Zhao, Nan, Zheng, Siqi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This report introduces FunAudioLLM, a model family designed to enhance natural voice interactions between humans and large language models (LLMs). At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity. SenseVoice-Small delivers exceptionally low-latency ASR for 5 languages, and SenseVoice-Large supports high-precision ASR for over 50 languages, while CosyVoice excels in multi-lingual voice generation, zero-shot in-context learning, cross-lingual voice cloning, and instruction-following capabilities. The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub. By integrating these models with LLMs, FunAudioLLM enables applications such as speech-to-speech translation, emotional voice chat, interactive podcasts, and expressive audiobook narration, thereby pushing the boundaries of voice interaction technology. Demos are available at https://fun-audio-llm.github.io, and the code can be accessed at https://github.com/FunAudioLLM.
ISSN:2331-8422