Loading…

RefreshNet: learning multiscale dynamics through hierarchical refreshing

Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computatio...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2024-08, Vol.112 (16), p.14479-14496
Main Authors: Farooq, Junaid, Rafiq, Danish, Vlachas, Pantelis R., Bazaz, Mohammad Abid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683
container_end_page 14496
container_issue 16
container_start_page 14479
container_title Nonlinear dynamics
container_volume 112
creator Farooq, Junaid
Rafiq, Danish
Vlachas, Pantelis R.
Bazaz, Mohammad Abid
description Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.
doi_str_mv 10.1007/s11071-024-09813-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076832548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076832548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsbpLdeJOiVigKotDbMm4mf0qa1N3k0G_vthG8eZqB935vhsfYNYdbDqDuPOegeAwiiSHXXMbyhM14qmQssnx9ymaQHyVYn7ML7zcAIAXoGVu-U-nI16803Ectoeuaroq2Yzs03mJLUbHvcNtYHw2168eqjuqGHDpbN0GO3EQH5pKdldh6uvqdc_b59PixWMart-eXxcMqtgJgiMsEvkqNaUZSF2UmkbCUaLNSUME15pigUkBKW0sJYZqAQJXZotA87JmWc3Yz5e5c_z2SH8ymH10XThoJKhhEmhxcYnJZ13sfvjQ712zR7Q0Hc2jMTI2Z0Jg5NmZkgOQE-WDuKnJ_0f9QP8ldb-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076832548</pqid></control><display><type>article</type><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><source>Springer Nature</source><creator>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</creator><creatorcontrib>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</creatorcontrib><description>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09813-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accumulation ; Accuracy ; Automotive Engineering ; Classical Mechanics ; Complex systems ; Computational efficiency ; Control ; Dynamical Systems ; Engineering ; Error analysis ; Forecasting ; Mechanical Engineering ; Reaction-diffusion equations ; Recurrent neural networks ; System dynamics ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-08, Vol.112 (16), p.14479-14496</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Farooq, Junaid</creatorcontrib><creatorcontrib>Rafiq, Danish</creatorcontrib><creatorcontrib>Vlachas, Pantelis R.</creatorcontrib><creatorcontrib>Bazaz, Mohammad Abid</creatorcontrib><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</description><subject>Accumulation</subject><subject>Accuracy</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Complex systems</subject><subject>Computational efficiency</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Mechanical Engineering</subject><subject>Reaction-diffusion equations</subject><subject>Recurrent neural networks</subject><subject>System dynamics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsbpLdeJOiVigKotDbMm4mf0qa1N3k0G_vthG8eZqB935vhsfYNYdbDqDuPOegeAwiiSHXXMbyhM14qmQssnx9ymaQHyVYn7ML7zcAIAXoGVu-U-nI16803Ectoeuaroq2Yzs03mJLUbHvcNtYHw2168eqjuqGHDpbN0GO3EQH5pKdldh6uvqdc_b59PixWMart-eXxcMqtgJgiMsEvkqNaUZSF2UmkbCUaLNSUME15pigUkBKW0sJYZqAQJXZotA87JmWc3Yz5e5c_z2SH8ymH10XThoJKhhEmhxcYnJZ13sfvjQ712zR7Q0Hc2jMTI2Z0Jg5NmZkgOQE-WDuKnJ_0f9QP8ldb-A</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Farooq, Junaid</creator><creator>Rafiq, Danish</creator><creator>Vlachas, Pantelis R.</creator><creator>Bazaz, Mohammad Abid</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><author>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Accuracy</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Complex systems</topic><topic>Computational efficiency</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Mechanical Engineering</topic><topic>Reaction-diffusion equations</topic><topic>Recurrent neural networks</topic><topic>System dynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Junaid</creatorcontrib><creatorcontrib>Rafiq, Danish</creatorcontrib><creatorcontrib>Vlachas, Pantelis R.</creatorcontrib><creatorcontrib>Bazaz, Mohammad Abid</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farooq, Junaid</au><au>Rafiq, Danish</au><au>Vlachas, Pantelis R.</au><au>Bazaz, Mohammad Abid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RefreshNet: learning multiscale dynamics through hierarchical refreshing</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>112</volume><issue>16</issue><spage>14479</spage><epage>14496</epage><pages>14479-14496</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09813-3</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-08, Vol.112 (16), p.14479-14496
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3076832548
source Springer Nature
subjects Accumulation
Accuracy
Automotive Engineering
Classical Mechanics
Complex systems
Computational efficiency
Control
Dynamical Systems
Engineering
Error analysis
Forecasting
Mechanical Engineering
Reaction-diffusion equations
Recurrent neural networks
System dynamics
Vibration
title RefreshNet: learning multiscale dynamics through hierarchical refreshing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RefreshNet:%20learning%20multiscale%20dynamics%20through%20hierarchical%20refreshing&rft.jtitle=Nonlinear%20dynamics&rft.au=Farooq,%20Junaid&rft.date=2024-08-01&rft.volume=112&rft.issue=16&rft.spage=14479&rft.epage=14496&rft.pages=14479-14496&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09813-3&rft_dat=%3Cproquest_cross%3E3076832548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076832548&rft_id=info:pmid/&rfr_iscdi=true