Loading…
RefreshNet: learning multiscale dynamics through hierarchical refreshing
Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computatio...
Saved in:
Published in: | Nonlinear dynamics 2024-08, Vol.112 (16), p.14479-14496 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683 |
container_end_page | 14496 |
container_issue | 16 |
container_start_page | 14479 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Farooq, Junaid Rafiq, Danish Vlachas, Pantelis R. Bazaz, Mohammad Abid |
description | Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior. |
doi_str_mv | 10.1007/s11071-024-09813-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3076832548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076832548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsbpLdeJOiVigKotDbMm4mf0qa1N3k0G_vthG8eZqB935vhsfYNYdbDqDuPOegeAwiiSHXXMbyhM14qmQssnx9ymaQHyVYn7ML7zcAIAXoGVu-U-nI16803Ectoeuaroq2Yzs03mJLUbHvcNtYHw2168eqjuqGHDpbN0GO3EQH5pKdldh6uvqdc_b59PixWMart-eXxcMqtgJgiMsEvkqNaUZSF2UmkbCUaLNSUME15pigUkBKW0sJYZqAQJXZotA87JmWc3Yz5e5c_z2SH8ymH10XThoJKhhEmhxcYnJZ13sfvjQ712zR7Q0Hc2jMTI2Z0Jg5NmZkgOQE-WDuKnJ_0f9QP8ldb-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076832548</pqid></control><display><type>article</type><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><source>Springer Nature</source><creator>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</creator><creatorcontrib>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</creatorcontrib><description>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09813-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accumulation ; Accuracy ; Automotive Engineering ; Classical Mechanics ; Complex systems ; Computational efficiency ; Control ; Dynamical Systems ; Engineering ; Error analysis ; Forecasting ; Mechanical Engineering ; Reaction-diffusion equations ; Recurrent neural networks ; System dynamics ; Vibration</subject><ispartof>Nonlinear dynamics, 2024-08, Vol.112 (16), p.14479-14496</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Farooq, Junaid</creatorcontrib><creatorcontrib>Rafiq, Danish</creatorcontrib><creatorcontrib>Vlachas, Pantelis R.</creatorcontrib><creatorcontrib>Bazaz, Mohammad Abid</creatorcontrib><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</description><subject>Accumulation</subject><subject>Accuracy</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Complex systems</subject><subject>Computational efficiency</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Forecasting</subject><subject>Mechanical Engineering</subject><subject>Reaction-diffusion equations</subject><subject>Recurrent neural networks</subject><subject>System dynamics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gKeA5-jsbpLdeJOiVigKotDbMm4mf0qa1N3k0G_vthG8eZqB935vhsfYNYdbDqDuPOegeAwiiSHXXMbyhM14qmQssnx9ymaQHyVYn7ML7zcAIAXoGVu-U-nI16803Ectoeuaroq2Yzs03mJLUbHvcNtYHw2168eqjuqGHDpbN0GO3EQH5pKdldh6uvqdc_b59PixWMart-eXxcMqtgJgiMsEvkqNaUZSF2UmkbCUaLNSUME15pigUkBKW0sJYZqAQJXZotA87JmWc3Yz5e5c_z2SH8ymH10XThoJKhhEmhxcYnJZ13sfvjQ712zR7Q0Hc2jMTI2Z0Jg5NmZkgOQE-WDuKnJ_0f9QP8ldb-A</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Farooq, Junaid</creator><creator>Rafiq, Danish</creator><creator>Vlachas, Pantelis R.</creator><creator>Bazaz, Mohammad Abid</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>RefreshNet: learning multiscale dynamics through hierarchical refreshing</title><author>Farooq, Junaid ; Rafiq, Danish ; Vlachas, Pantelis R. ; Bazaz, Mohammad Abid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Accuracy</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Complex systems</topic><topic>Computational efficiency</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Forecasting</topic><topic>Mechanical Engineering</topic><topic>Reaction-diffusion equations</topic><topic>Recurrent neural networks</topic><topic>System dynamics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Junaid</creatorcontrib><creatorcontrib>Rafiq, Danish</creatorcontrib><creatorcontrib>Vlachas, Pantelis R.</creatorcontrib><creatorcontrib>Bazaz, Mohammad Abid</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farooq, Junaid</au><au>Rafiq, Danish</au><au>Vlachas, Pantelis R.</au><au>Bazaz, Mohammad Abid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RefreshNet: learning multiscale dynamics through hierarchical refreshing</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>112</volume><issue>16</issue><spage>14479</spage><epage>14496</epage><pages>14479-14496</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Forecasting complex system dynamics, particularly for long-term predictions, is persistently hindered by error accumulation and computational burdens. This study presents RefreshNet, a multiscale framework developed to overcome these challenges, delivering an unprecedented balance between computational efficiency and predictive accuracy. RefreshNet incorporates convolutional autoencoders to identify a reduced order latent space capturing essential features of the dynamics, and strategically employs multiple recurrent neural network blocks operating at varying temporal resolutions within the latent space, thus allowing the capture of latent dynamics at multiple temporal scales. The unique “refreshing” mechanism in RefreshNet allows coarser blocks to reset inputs of finer blocks, effectively controlling and alleviating error accumulation. This design demonstrates superiority over existing techniques regarding computational efficiency and predictive accuracy, especially in long-term forecasting. The framework is validated using three benchmark applications: the FitzHugh–Nagumo system, the Reaction–Diffusion equation, and Kuramoto–Sivashinsky dynamics. RefreshNet significantly outperforms state-of-the-art methods in long-term forecasting accuracy and speed, marking a significant advancement in modeling complex systems and opening new avenues in understanding and predicting their behavior.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09813-3</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-08, Vol.112 (16), p.14479-14496 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3076832548 |
source | Springer Nature |
subjects | Accumulation Accuracy Automotive Engineering Classical Mechanics Complex systems Computational efficiency Control Dynamical Systems Engineering Error analysis Forecasting Mechanical Engineering Reaction-diffusion equations Recurrent neural networks System dynamics Vibration |
title | RefreshNet: learning multiscale dynamics through hierarchical refreshing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RefreshNet:%20learning%20multiscale%20dynamics%20through%20hierarchical%20refreshing&rft.jtitle=Nonlinear%20dynamics&rft.au=Farooq,%20Junaid&rft.date=2024-08-01&rft.volume=112&rft.issue=16&rft.spage=14479&rft.epage=14496&rft.pages=14479-14496&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09813-3&rft_dat=%3Cproquest_cross%3E3076832548%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-f40bf8a56e38df63aeaf3ac6f2ed18a9a4a770e78cce4ea5402a76cdd81540683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076832548&rft_id=info:pmid/&rfr_iscdi=true |