Loading…
Kinetic Interacting Particle Langevin Monte Carlo
This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent va...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Paul Felix Valsecchi Oliva Akyildiz, O Deniz |
description | This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent variables and exploit the fact that the stationary distribution of this diffusion concentrates around the maximum marginal likelihood estimate of the parameters. We then provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models. For each algorithm, we obtain nonasymptotic rates of convergence for the case where the joint log-likelihood is strongly concave with respect to latent variables and parameters. In particular, we provide convergence analysis for the diffusion together with the discretisation error, providing convergence rate estimates for the algorithms in Wasserstein-2 distance. We achieve accelerated convergence rates clearly demonstrating improvement in dimension dependence, similar to the underdamped samplers. To demonstrate the utility of the introduced methodology, we provide numerical experiments that demonstrate the effectiveness of the proposed diffusion for statistical inference and the stability of the numerical integrators utilised for discretisation. Our setting covers a broad number of applications, including unsupervised learning, statistical inference, and inverse problems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3077528897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077528897</sourcerecordid><originalsourceid>FETCH-proquest_journals_30775288973</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M7MSy3JTFbwzCtJLUpMLsnMS1cISCwCCuWkKvgk5qWnlmXmKfjmA6UVnBOLcvJ5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2MDc3NTIwsLS3Jg4VQCTZzNh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077528897</pqid></control><display><type>article</type><title>Kinetic Interacting Particle Langevin Monte Carlo</title><source>Publicly Available Content Database</source><creator>Paul Felix Valsecchi Oliva ; Akyildiz, O Deniz</creator><creatorcontrib>Paul Felix Valsecchi Oliva ; Akyildiz, O Deniz</creatorcontrib><description>This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent variables and exploit the fact that the stationary distribution of this diffusion concentrates around the maximum marginal likelihood estimate of the parameters. We then provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models. For each algorithm, we obtain nonasymptotic rates of convergence for the case where the joint log-likelihood is strongly concave with respect to latent variables and parameters. In particular, we provide convergence analysis for the diffusion together with the discretisation error, providing convergence rate estimates for the algorithms in Wasserstein-2 distance. We achieve accelerated convergence rates clearly demonstrating improvement in dimension dependence, similar to the underdamped samplers. To demonstrate the utility of the introduced methodology, we provide numerical experiments that demonstrate the effectiveness of the proposed diffusion for statistical inference and the stability of the numerical integrators utilised for discretisation. Our setting covers a broad number of applications, including unsupervised learning, statistical inference, and inverse problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convergence ; Diffusion rate ; Discretization ; Error analysis ; Inverse problems ; Mathematical analysis ; Parameter estimation ; Statistical inference ; Statistical methods ; Statistical models ; Unsupervised learning</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3077528897?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Paul Felix Valsecchi Oliva</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><title>Kinetic Interacting Particle Langevin Monte Carlo</title><title>arXiv.org</title><description>This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent variables and exploit the fact that the stationary distribution of this diffusion concentrates around the maximum marginal likelihood estimate of the parameters. We then provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models. For each algorithm, we obtain nonasymptotic rates of convergence for the case where the joint log-likelihood is strongly concave with respect to latent variables and parameters. In particular, we provide convergence analysis for the diffusion together with the discretisation error, providing convergence rate estimates for the algorithms in Wasserstein-2 distance. We achieve accelerated convergence rates clearly demonstrating improvement in dimension dependence, similar to the underdamped samplers. To demonstrate the utility of the introduced methodology, we provide numerical experiments that demonstrate the effectiveness of the proposed diffusion for statistical inference and the stability of the numerical integrators utilised for discretisation. Our setting covers a broad number of applications, including unsupervised learning, statistical inference, and inverse problems.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Diffusion rate</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Parameter estimation</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Unsupervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M7MSy3JTFbwzCtJLUpMLsnMS1cISCwCCuWkKvgk5qWnlmXmKfjmA6UVnBOLcvJ5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCre2MDc3NTIwsLS3Jg4VQCTZzNh</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Paul Felix Valsecchi Oliva</creator><creator>Akyildiz, O Deniz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240904</creationdate><title>Kinetic Interacting Particle Langevin Monte Carlo</title><author>Paul Felix Valsecchi Oliva ; Akyildiz, O Deniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30775288973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Diffusion rate</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Parameter estimation</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul Felix Valsecchi Oliva</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul Felix Valsecchi Oliva</au><au>Akyildiz, O Deniz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kinetic Interacting Particle Langevin Monte Carlo</atitle><jtitle>arXiv.org</jtitle><date>2024-09-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces and analyses interacting underdamped Langevin algorithms, termed Kinetic Interacting Particle Langevin Monte Carlo (KIPLMC) methods, for statistical inference in latent variable models. We propose a diffusion process that evolves jointly in the space of parameters and latent variables and exploit the fact that the stationary distribution of this diffusion concentrates around the maximum marginal likelihood estimate of the parameters. We then provide two explicit discretisations of this diffusion as practical algorithms to estimate parameters of statistical models. For each algorithm, we obtain nonasymptotic rates of convergence for the case where the joint log-likelihood is strongly concave with respect to latent variables and parameters. In particular, we provide convergence analysis for the diffusion together with the discretisation error, providing convergence rate estimates for the algorithms in Wasserstein-2 distance. We achieve accelerated convergence rates clearly demonstrating improvement in dimension dependence, similar to the underdamped samplers. To demonstrate the utility of the introduced methodology, we provide numerical experiments that demonstrate the effectiveness of the proposed diffusion for statistical inference and the stability of the numerical integrators utilised for discretisation. Our setting covers a broad number of applications, including unsupervised learning, statistical inference, and inverse problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3077528897 |
source | Publicly Available Content Database |
subjects | Algorithms Convergence Diffusion rate Discretization Error analysis Inverse problems Mathematical analysis Parameter estimation Statistical inference Statistical methods Statistical models Unsupervised learning |
title | Kinetic Interacting Particle Langevin Monte Carlo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kinetic%20Interacting%20Particle%20Langevin%20Monte%20Carlo&rft.jtitle=arXiv.org&rft.au=Paul%20Felix%20Valsecchi%20Oliva&rft.date=2024-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3077528897%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30775288973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077528897&rft_id=info:pmid/&rfr_iscdi=true |