Loading…

Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice

Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear op...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-07, Vol.34 (28), p.n/a
Main Authors: Li, Hui, Diao, Mengjuan, Boukhvalov, Danil W., Ke, Yuting, Humphrey, Mark G., Zhang, Chi, Huang, Zhipeng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Hui
Diao, Mengjuan
Boukhvalov, Danil W.
Ke, Yuting
Humphrey, Mark G.
Zhang, Chi
Huang, Zhipeng
description Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings. Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.
doi_str_mv 10.1002/adfm.202400077
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3077632514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077632514</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85fZpJlrdYWqhWq4MrhJpnKlHQSJwnSXR9B8A37JE6pdHW-C4dz4UPompIBJYTdQrFcDxhhghCi1AnqUUllxAlLTo9M38_RRdOsCKFKcdFDHy--WltnXIufK1cGAo_ndWtzKPEwayofuHLYOrxwC7bb_txBYwo82WTeFnjqKv8Jzua77e_8QHjR1caX0IYNc4nOllA25uo_--ht_PA6mkSz-eN0NJxFNeNcRakRuTSJMopDptI4V6CEkAmADBFnCYh4WUBKOZEmzznljCcqlXlGhYIk5X10c9itffXVmabVq6rzLrzUPMiQnMVUhFZ6aH3b0mx07e0a_EZTovcC9V6gPgrUw_vx0_HifwdUaI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077632514</pqid></control><display><type>article</type><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><source>Wiley</source><creator>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</creator><creatorcontrib>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</creatorcontrib><description>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings. Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400077</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Absorptivity ; Density functional theory ; dielectric enhancement ; Energy gap ; Excitation ; Intercalation ; Modulation ; Molecular structure ; nonlinear optical materials ; Nonlinear optics ; Nonlinear response ; Optical materials ; Optics ; Organic chemistry ; Photon absorption ; Photons ; SnS2 ; super lattice ; Superlattices ; Tin disulfide</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (28), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7113-2903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Diao, Mengjuan</creatorcontrib><creatorcontrib>Boukhvalov, Danil W.</creatorcontrib><creatorcontrib>Ke, Yuting</creatorcontrib><creatorcontrib>Humphrey, Mark G.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><title>Advanced functional materials</title><description>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings. Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</description><subject>2D materials</subject><subject>Absorptivity</subject><subject>Density functional theory</subject><subject>dielectric enhancement</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Intercalation</subject><subject>Modulation</subject><subject>Molecular structure</subject><subject>nonlinear optical materials</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Photon absorption</subject><subject>Photons</subject><subject>SnS2</subject><subject>super lattice</subject><subject>Superlattices</subject><subject>Tin disulfide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85fZpJlrdYWqhWq4MrhJpnKlHQSJwnSXR9B8A37JE6pdHW-C4dz4UPompIBJYTdQrFcDxhhghCi1AnqUUllxAlLTo9M38_RRdOsCKFKcdFDHy--WltnXIufK1cGAo_ndWtzKPEwayofuHLYOrxwC7bb_txBYwo82WTeFnjqKv8Jzua77e_8QHjR1caX0IYNc4nOllA25uo_--ht_PA6mkSz-eN0NJxFNeNcRakRuTSJMopDptI4V6CEkAmADBFnCYh4WUBKOZEmzznljCcqlXlGhYIk5X10c9itffXVmabVq6rzLrzUPMiQnMVUhFZ6aH3b0mx07e0a_EZTovcC9V6gPgrUw_vx0_HifwdUaI0</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Hui</creator><creator>Diao, Mengjuan</creator><creator>Boukhvalov, Danil W.</creator><creator>Ke, Yuting</creator><creator>Humphrey, Mark G.</creator><creator>Zhang, Chi</creator><creator>Huang, Zhipeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid></search><sort><creationdate>20240701</creationdate><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><author>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Absorptivity</topic><topic>Density functional theory</topic><topic>dielectric enhancement</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Intercalation</topic><topic>Modulation</topic><topic>Molecular structure</topic><topic>nonlinear optical materials</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Photon absorption</topic><topic>Photons</topic><topic>SnS2</topic><topic>super lattice</topic><topic>Superlattices</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Diao, Mengjuan</creatorcontrib><creatorcontrib>Boukhvalov, Danil W.</creatorcontrib><creatorcontrib>Ke, Yuting</creatorcontrib><creatorcontrib>Humphrey, Mark G.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Diao, Mengjuan</au><au>Boukhvalov, Danil W.</au><au>Ke, Yuting</au><au>Humphrey, Mark G.</au><au>Zhang, Chi</au><au>Huang, Zhipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings. Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400077</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (28), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3077632514
source Wiley
subjects 2D materials
Absorptivity
Density functional theory
dielectric enhancement
Energy gap
Excitation
Intercalation
Modulation
Molecular structure
nonlinear optical materials
Nonlinear optics
Nonlinear response
Optical materials
Optics
Organic chemistry
Photon absorption
Photons
SnS2
super lattice
Superlattices
Tin disulfide
title Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prominent%20Nonlinear%20Optical%20Absorption%20in%20SnS2%E2%80%90Based%20Hybrid%20Inorganic%E2%80%93Organic%20Superlattice&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Hui&rft.date=2024-07-01&rft.volume=34&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400077&rft_dat=%3Cproquest_wiley%3E3077632514%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077632514&rft_id=info:pmid/&rfr_iscdi=true