Loading…
Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice
Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear op...
Saved in:
Published in: | Advanced functional materials 2024-07, Vol.34 (28), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 28 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Li, Hui Diao, Mengjuan Boukhvalov, Danil W. Ke, Yuting Humphrey, Mark G. Zhang, Chi Huang, Zhipeng |
description | Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings.
Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes. |
doi_str_mv | 10.1002/adfm.202400077 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3077632514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077632514</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85fZpJlrdYWqhWq4MrhJpnKlHQSJwnSXR9B8A37JE6pdHW-C4dz4UPompIBJYTdQrFcDxhhghCi1AnqUUllxAlLTo9M38_RRdOsCKFKcdFDHy--WltnXIufK1cGAo_ndWtzKPEwayofuHLYOrxwC7bb_txBYwo82WTeFnjqKv8Jzua77e_8QHjR1caX0IYNc4nOllA25uo_--ht_PA6mkSz-eN0NJxFNeNcRakRuTSJMopDptI4V6CEkAmADBFnCYh4WUBKOZEmzznljCcqlXlGhYIk5X10c9itffXVmabVq6rzLrzUPMiQnMVUhFZ6aH3b0mx07e0a_EZTovcC9V6gPgrUw_vx0_HifwdUaI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077632514</pqid></control><display><type>article</type><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><source>Wiley</source><creator>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</creator><creatorcontrib>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</creatorcontrib><description>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings.
Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202400077</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Absorptivity ; Density functional theory ; dielectric enhancement ; Energy gap ; Excitation ; Intercalation ; Modulation ; Molecular structure ; nonlinear optical materials ; Nonlinear optics ; Nonlinear response ; Optical materials ; Optics ; Organic chemistry ; Photon absorption ; Photons ; SnS2 ; super lattice ; Superlattices ; Tin disulfide</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (28), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7113-2903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Diao, Mengjuan</creatorcontrib><creatorcontrib>Boukhvalov, Danil W.</creatorcontrib><creatorcontrib>Ke, Yuting</creatorcontrib><creatorcontrib>Humphrey, Mark G.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><title>Advanced functional materials</title><description>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings.
Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</description><subject>2D materials</subject><subject>Absorptivity</subject><subject>Density functional theory</subject><subject>dielectric enhancement</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Intercalation</subject><subject>Modulation</subject><subject>Molecular structure</subject><subject>nonlinear optical materials</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Organic chemistry</subject><subject>Photon absorption</subject><subject>Photons</subject><subject>SnS2</subject><subject>super lattice</subject><subject>Superlattices</subject><subject>Tin disulfide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rgdcp85fZpJlrdYWqhWq4MrhJpnKlHQSJwnSXR9B8A37JE6pdHW-C4dz4UPompIBJYTdQrFcDxhhghCi1AnqUUllxAlLTo9M38_RRdOsCKFKcdFDHy--WltnXIufK1cGAo_ndWtzKPEwayofuHLYOrxwC7bb_txBYwo82WTeFnjqKv8Jzua77e_8QHjR1caX0IYNc4nOllA25uo_--ht_PA6mkSz-eN0NJxFNeNcRakRuTSJMopDptI4V6CEkAmADBFnCYh4WUBKOZEmzznljCcqlXlGhYIk5X10c9itffXVmabVq6rzLrzUPMiQnMVUhFZ6aH3b0mx07e0a_EZTovcC9V6gPgrUw_vx0_HifwdUaI0</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Hui</creator><creator>Diao, Mengjuan</creator><creator>Boukhvalov, Danil W.</creator><creator>Ke, Yuting</creator><creator>Humphrey, Mark G.</creator><creator>Zhang, Chi</creator><creator>Huang, Zhipeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid></search><sort><creationdate>20240701</creationdate><title>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</title><author>Li, Hui ; Diao, Mengjuan ; Boukhvalov, Danil W. ; Ke, Yuting ; Humphrey, Mark G. ; Zhang, Chi ; Huang, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Absorptivity</topic><topic>Density functional theory</topic><topic>dielectric enhancement</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Intercalation</topic><topic>Modulation</topic><topic>Molecular structure</topic><topic>nonlinear optical materials</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Organic chemistry</topic><topic>Photon absorption</topic><topic>Photons</topic><topic>SnS2</topic><topic>super lattice</topic><topic>Superlattices</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Diao, Mengjuan</creatorcontrib><creatorcontrib>Boukhvalov, Danil W.</creatorcontrib><creatorcontrib>Ke, Yuting</creatorcontrib><creatorcontrib>Humphrey, Mark G.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Diao, Mengjuan</au><au>Boukhvalov, Danil W.</au><au>Ke, Yuting</au><au>Humphrey, Mark G.</au><au>Zhang, Chi</au><au>Huang, Zhipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings.
Organic insertion serves as an effective approach to enhance the nonlinear optical properties of layered materials. SnS2 intercalated by cetyltrimethylammonium possesses strong optical nonlinearity and large modulation depth in a broad wavelength range for different nonlinear optical processes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202400077</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7113-2903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-07, Vol.34 (28), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3077632514 |
source | Wiley |
subjects | 2D materials Absorptivity Density functional theory dielectric enhancement Energy gap Excitation Intercalation Modulation Molecular structure nonlinear optical materials Nonlinear optics Nonlinear response Optical materials Optics Organic chemistry Photon absorption Photons SnS2 super lattice Superlattices Tin disulfide |
title | Prominent Nonlinear Optical Absorption in SnS2‐Based Hybrid Inorganic–Organic Superlattice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prominent%20Nonlinear%20Optical%20Absorption%20in%20SnS2%E2%80%90Based%20Hybrid%20Inorganic%E2%80%93Organic%20Superlattice&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Hui&rft.date=2024-07-01&rft.volume=34&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202400077&rft_dat=%3Cproquest_wiley%3E3077632514%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-9e4c6e87e73ab795c7a74468aa64465b8a45fda91306ecc313238796cb147a893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3077632514&rft_id=info:pmid/&rfr_iscdi=true |