Loading…
Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition
Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reve...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-07, Vol.221 (13), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 13 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Kato, Takahiro Nishinaka, Hiroyuki Shimazoe, Kazuki Yoshimoto, Masahiro |
description | Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reveal that various planes of δ‐Ga2O3 thin films are grown in both the out‐of‐plane and in‐plane orientations using the same crystal‐structured buffer layers to reduce the lattice mismatch. δ‐Ga2O3 (111) is demonstrated to grow on the YSZ (111) in the narrow growth temperature range of 575–675 °C due to thermal instability of β‐Fe2O3 buffer layers. Next, a c‐plane sapphire wafer as a substrate using two buffer layers for the growth of δ‐Ga2O3 is investigated. XRD 2θ–ω scan reveals that the mixture of α‐ and δ‐Ga2O3 thin films is grown on Fe2O3/In2O3/c‐plane sapphire. This is because the Fe2O3 buffer layers are phase separated into α and β phases due to the large grain size of the In2O3 buffer layer. XRD φ‐scan profiles indicate that the δ‐Ga2O3 thin film grown on sapphire is composed of a twin domain. This study contributes to our understanding of the growth mechanism of δ‐Ga2O3 and its future applications in devices.
Herein, the δ‐Ga2O3 epitaxial thin films are fabricated on various planes of YSZ and c‐plane sapphire substrates using β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. The β‐Fe2O3 buffer layer with small lattice mismatch for δ‐Ga2O3 (≈1.6%) plays an important role in the growth of δ‐Ga2O3 thin films. |
doi_str_mv | 10.1002/pssa.202300582 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3078002104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078002104</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2732-e153335ff7561a7bb037671ff125844f17fa08c2255c065405c7bb72239b17043</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhjdGExG9ep7EMzhtt9vliAhogsFkwUQvm4KtlMBubReRm4_Asxifg4fwSVzAcJqZzJf_T74guCRYJ4j02nov6xQpQ-QxPQoqJI5oLWKkcXzYEU-DM--niCEPBakE67Y1hfw0cgZdly-LCeQaNj-_X-uupH0Gg4nJoGNmc7_7Z5Bn8Jy8gMxeIZHWToxTkCxGvnCyUB6G3mRvsPkuAzpqG3Cz0Fo56MmVch4-jIQH4wtoTdTcjMvWJ2lzB7fK5t4UJs_OgxMtZ15d_M9qMOy0B627Wq_fvW81ezVLBaM1RThjjGsteESkGI2QiUgQrQnlcRhqIrTEeEwp52OMeIh8XEKCUtYYEYEhqwZX-1zr8veF8kU6zRcuKytThiIuhZId1dhTSzNTq9Q6M5dulRJMt8rTrfL0oDx9TJLm4WJ_dzp5PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078002104</pqid></control><display><type>article</type><title>Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kato, Takahiro ; Nishinaka, Hiroyuki ; Shimazoe, Kazuki ; Yoshimoto, Masahiro</creator><creatorcontrib>Kato, Takahiro ; Nishinaka, Hiroyuki ; Shimazoe, Kazuki ; Yoshimoto, Masahiro</creatorcontrib><description>Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reveal that various planes of δ‐Ga2O3 thin films are grown in both the out‐of‐plane and in‐plane orientations using the same crystal‐structured buffer layers to reduce the lattice mismatch. δ‐Ga2O3 (111) is demonstrated to grow on the YSZ (111) in the narrow growth temperature range of 575–675 °C due to thermal instability of β‐Fe2O3 buffer layers. Next, a c‐plane sapphire wafer as a substrate using two buffer layers for the growth of δ‐Ga2O3 is investigated. XRD 2θ–ω scan reveals that the mixture of α‐ and δ‐Ga2O3 thin films is grown on Fe2O3/In2O3/c‐plane sapphire. This is because the Fe2O3 buffer layers are phase separated into α and β phases due to the large grain size of the In2O3 buffer layer. XRD φ‐scan profiles indicate that the δ‐Ga2O3 thin film grown on sapphire is composed of a twin domain. This study contributes to our understanding of the growth mechanism of δ‐Ga2O3 and its future applications in devices.
Herein, the δ‐Ga2O3 epitaxial thin films are fabricated on various planes of YSZ and c‐plane sapphire substrates using β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. The β‐Fe2O3 buffer layer with small lattice mismatch for δ‐Ga2O3 (≈1.6%) plays an important role in the growth of δ‐Ga2O3 thin films.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300582</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; Chemical vapor deposition ; Crystal growth ; Crystal lattices ; Crystal structure ; Epitaxial growth ; Ga2O3 ; Gallium oxides ; Grain size ; Indium oxides ; mist chemical vapor deposition ; Sapphire ; Substrates ; Thermal instability ; Thin films ; X-ray diffraction ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide ; β-Fe2O3 ; δ-epitaxial growths</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-07, Vol.221 (13), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7710-0411 ; 0000-0003-4224-6466 ; 0000-0003-1878-0765 ; 0009-0006-2306-8624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kato, Takahiro</creatorcontrib><creatorcontrib>Nishinaka, Hiroyuki</creatorcontrib><creatorcontrib>Shimazoe, Kazuki</creatorcontrib><creatorcontrib>Yoshimoto, Masahiro</creatorcontrib><title>Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition</title><title>Physica status solidi. A, Applications and materials science</title><description>Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reveal that various planes of δ‐Ga2O3 thin films are grown in both the out‐of‐plane and in‐plane orientations using the same crystal‐structured buffer layers to reduce the lattice mismatch. δ‐Ga2O3 (111) is demonstrated to grow on the YSZ (111) in the narrow growth temperature range of 575–675 °C due to thermal instability of β‐Fe2O3 buffer layers. Next, a c‐plane sapphire wafer as a substrate using two buffer layers for the growth of δ‐Ga2O3 is investigated. XRD 2θ–ω scan reveals that the mixture of α‐ and δ‐Ga2O3 thin films is grown on Fe2O3/In2O3/c‐plane sapphire. This is because the Fe2O3 buffer layers are phase separated into α and β phases due to the large grain size of the In2O3 buffer layer. XRD φ‐scan profiles indicate that the δ‐Ga2O3 thin film grown on sapphire is composed of a twin domain. This study contributes to our understanding of the growth mechanism of δ‐Ga2O3 and its future applications in devices.
Herein, the δ‐Ga2O3 epitaxial thin films are fabricated on various planes of YSZ and c‐plane sapphire substrates using β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. The β‐Fe2O3 buffer layer with small lattice mismatch for δ‐Ga2O3 (≈1.6%) plays an important role in the growth of δ‐Ga2O3 thin films.</description><subject>Buffer layers</subject><subject>Chemical vapor deposition</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Epitaxial growth</subject><subject>Ga2O3</subject><subject>Gallium oxides</subject><subject>Grain size</subject><subject>Indium oxides</subject><subject>mist chemical vapor deposition</subject><subject>Sapphire</subject><subject>Substrates</subject><subject>Thermal instability</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><subject>β-Fe2O3</subject><subject>δ-epitaxial growths</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEQhjdGExG9ep7EMzhtt9vliAhogsFkwUQvm4KtlMBubReRm4_Asxifg4fwSVzAcJqZzJf_T74guCRYJ4j02nov6xQpQ-QxPQoqJI5oLWKkcXzYEU-DM--niCEPBakE67Y1hfw0cgZdly-LCeQaNj-_X-uupH0Gg4nJoGNmc7_7Z5Bn8Jy8gMxeIZHWToxTkCxGvnCyUB6G3mRvsPkuAzpqG3Cz0Fo56MmVch4-jIQH4wtoTdTcjMvWJ2lzB7fK5t4UJs_OgxMtZ15d_M9qMOy0B627Wq_fvW81ezVLBaM1RThjjGsteESkGI2QiUgQrQnlcRhqIrTEeEwp52OMeIh8XEKCUtYYEYEhqwZX-1zr8veF8kU6zRcuKytThiIuhZId1dhTSzNTq9Q6M5dulRJMt8rTrfL0oDx9TJLm4WJ_dzp5PQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Kato, Takahiro</creator><creator>Nishinaka, Hiroyuki</creator><creator>Shimazoe, Kazuki</creator><creator>Yoshimoto, Masahiro</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7710-0411</orcidid><orcidid>https://orcid.org/0000-0003-4224-6466</orcidid><orcidid>https://orcid.org/0000-0003-1878-0765</orcidid><orcidid>https://orcid.org/0009-0006-2306-8624</orcidid></search><sort><creationdate>202407</creationdate><title>Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition</title><author>Kato, Takahiro ; Nishinaka, Hiroyuki ; Shimazoe, Kazuki ; Yoshimoto, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2732-e153335ff7561a7bb037671ff125844f17fa08c2255c065405c7bb72239b17043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buffer layers</topic><topic>Chemical vapor deposition</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Epitaxial growth</topic><topic>Ga2O3</topic><topic>Gallium oxides</topic><topic>Grain size</topic><topic>Indium oxides</topic><topic>mist chemical vapor deposition</topic><topic>Sapphire</topic><topic>Substrates</topic><topic>Thermal instability</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><topic>β-Fe2O3</topic><topic>δ-epitaxial growths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Takahiro</creatorcontrib><creatorcontrib>Nishinaka, Hiroyuki</creatorcontrib><creatorcontrib>Shimazoe, Kazuki</creatorcontrib><creatorcontrib>Yoshimoto, Masahiro</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Takahiro</au><au>Nishinaka, Hiroyuki</au><au>Shimazoe, Kazuki</au><au>Yoshimoto, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-07</date><risdate>2024</risdate><volume>221</volume><issue>13</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reveal that various planes of δ‐Ga2O3 thin films are grown in both the out‐of‐plane and in‐plane orientations using the same crystal‐structured buffer layers to reduce the lattice mismatch. δ‐Ga2O3 (111) is demonstrated to grow on the YSZ (111) in the narrow growth temperature range of 575–675 °C due to thermal instability of β‐Fe2O3 buffer layers. Next, a c‐plane sapphire wafer as a substrate using two buffer layers for the growth of δ‐Ga2O3 is investigated. XRD 2θ–ω scan reveals that the mixture of α‐ and δ‐Ga2O3 thin films is grown on Fe2O3/In2O3/c‐plane sapphire. This is because the Fe2O3 buffer layers are phase separated into α and β phases due to the large grain size of the In2O3 buffer layer. XRD φ‐scan profiles indicate that the δ‐Ga2O3 thin film grown on sapphire is composed of a twin domain. This study contributes to our understanding of the growth mechanism of δ‐Ga2O3 and its future applications in devices.
Herein, the δ‐Ga2O3 epitaxial thin films are fabricated on various planes of YSZ and c‐plane sapphire substrates using β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. The β‐Fe2O3 buffer layer with small lattice mismatch for δ‐Ga2O3 (≈1.6%) plays an important role in the growth of δ‐Ga2O3 thin films.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300582</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7710-0411</orcidid><orcidid>https://orcid.org/0000-0003-4224-6466</orcidid><orcidid>https://orcid.org/0000-0003-1878-0765</orcidid><orcidid>https://orcid.org/0009-0006-2306-8624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-07, Vol.221 (13), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_3078002104 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Buffer layers Chemical vapor deposition Crystal growth Crystal lattices Crystal structure Epitaxial growth Ga2O3 Gallium oxides Grain size Indium oxides mist chemical vapor deposition Sapphire Substrates Thermal instability Thin films X-ray diffraction Yttria-stabilized zirconia Yttrium oxide Zirconium dioxide β-Fe2O3 δ-epitaxial growths |
title | Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Growth%20of%20%CE%B4%E2%80%90Ga2O3%20Thin%20Films%20Grown%20on%20YSZ%20and%20Sapphire%20Substrates%20Using%20%CE%B2%E2%80%90Fe2O3%20Buffer%20Layers%20via%20Mist%20Chemical%20Vapor%20Deposition&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kato,%20Takahiro&rft.date=2024-07&rft.volume=221&rft.issue=13&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300582&rft_dat=%3Cproquest_wiley%3E3078002104%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2732-e153335ff7561a7bb037671ff125844f17fa08c2255c065405c7bb72239b17043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078002104&rft_id=info:pmid/&rfr_iscdi=true |