Loading…
An Efficient Platform for Numerical Modeling of Partial Differential Equations
Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833 |
---|---|
cites | cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Ji, Duofa Li, Chenxi Zhai, Changhai Cao, Zelin |
description | Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated. |
doi_str_mv | 10.1109/TGRS.2024.3409620 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3078073702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10549528</ieee_id><sourcerecordid>3078073702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4DlxZv9lcyy1VqHWovW8bLe7siVN2k1y8Nub0B68zPCG9-bBj5B7hAwRiqf1_PMro0B5xjgUksIFGaEQKgXJ-SUZARYypaqg1-SmaXYAyAXmI7KcVMnM-2CDq9pkVZrW13Gf9CNZdnsXgzVl8l5vXRmqn6T2ycrENvS35-C9i31oELNjZ9pQV80tufKmbNzdeY_J98tsPX1NFx_zt-lkkVpKeZv6jUBkTgqBUoKxuaQOvPIAuUeFVFrLuEUuN8qYzTaXnqP1tOhVAUoxNiaPp7-HWB8717R6V3ex6is1g1xBznKgvQtPLhvrponO60MMexN_NYIesOkBmx6w6TO2PvNwygTn3D-_4IWgiv0BBcdoRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078073702</pqid></control><display><type>article</type><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><source>IEEE Xplore (Online service)</source><creator>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</creator><creatorcontrib>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</creatorcontrib><description>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3409620</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic waves ; Artificial neural networks ; Deep learning ; Differential equations ; Efficiency ; Efficient numerical modeling ; Geophysical methods ; Geophysics ; Machine learning ; machine learning framework ; Magnetic fields ; Mathematical models ; Modelling ; Neural networks ; Numerical methods ; Numerical models ; P-waves ; Partial differential equations ; partial differential equations (PDEs) ; Real time ; recurrent convolutional neural network (RCNN) ; Recurrent neural networks ; Remote sensing ; Seismic waves ; Spatial discrimination learning ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</citedby><cites>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</cites><orcidid>0009-0003-3185-8894 ; 0000-0001-9233-3889 ; 0000-0002-5537-5016 ; 0009-0007-2481-231X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10549528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Ji, Duofa</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhai, Changhai</creatorcontrib><creatorcontrib>Cao, Zelin</creatorcontrib><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</description><subject>Acoustic waves</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Efficiency</subject><subject>Efficient numerical modeling</subject><subject>Geophysical methods</subject><subject>Geophysics</subject><subject>Machine learning</subject><subject>machine learning framework</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Numerical models</subject><subject>P-waves</subject><subject>Partial differential equations</subject><subject>partial differential equations (PDEs)</subject><subject>Real time</subject><subject>recurrent convolutional neural network (RCNN)</subject><subject>Recurrent neural networks</subject><subject>Remote sensing</subject><subject>Seismic waves</subject><subject>Spatial discrimination learning</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4DlxZv9lcyy1VqHWovW8bLe7siVN2k1y8Nub0B68zPCG9-bBj5B7hAwRiqf1_PMro0B5xjgUksIFGaEQKgXJ-SUZARYypaqg1-SmaXYAyAXmI7KcVMnM-2CDq9pkVZrW13Gf9CNZdnsXgzVl8l5vXRmqn6T2ycrENvS35-C9i31oELNjZ9pQV80tufKmbNzdeY_J98tsPX1NFx_zt-lkkVpKeZv6jUBkTgqBUoKxuaQOvPIAuUeFVFrLuEUuN8qYzTaXnqP1tOhVAUoxNiaPp7-HWB8717R6V3ex6is1g1xBznKgvQtPLhvrponO60MMexN_NYIesOkBmx6w6TO2PvNwygTn3D-_4IWgiv0BBcdoRg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ji, Duofa</creator><creator>Li, Chenxi</creator><creator>Zhai, Changhai</creator><creator>Cao, Zelin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3185-8894</orcidid><orcidid>https://orcid.org/0000-0001-9233-3889</orcidid><orcidid>https://orcid.org/0000-0002-5537-5016</orcidid><orcidid>https://orcid.org/0009-0007-2481-231X</orcidid></search><sort><creationdate>2024</creationdate><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><author>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Efficiency</topic><topic>Efficient numerical modeling</topic><topic>Geophysical methods</topic><topic>Geophysics</topic><topic>Machine learning</topic><topic>machine learning framework</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Numerical models</topic><topic>P-waves</topic><topic>Partial differential equations</topic><topic>partial differential equations (PDEs)</topic><topic>Real time</topic><topic>recurrent convolutional neural network (RCNN)</topic><topic>Recurrent neural networks</topic><topic>Remote sensing</topic><topic>Seismic waves</topic><topic>Spatial discrimination learning</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Duofa</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhai, Changhai</creatorcontrib><creatorcontrib>Cao, Zelin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Duofa</au><au>Li, Chenxi</au><au>Zhai, Changhai</au><au>Cao, Zelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Platform for Numerical Modeling of Partial Differential Equations</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3409620</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3185-8894</orcidid><orcidid>https://orcid.org/0000-0001-9233-3889</orcidid><orcidid>https://orcid.org/0000-0002-5537-5016</orcidid><orcidid>https://orcid.org/0009-0007-2481-231X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_3078073702 |
source | IEEE Xplore (Online service) |
subjects | Acoustic waves Artificial neural networks Deep learning Differential equations Efficiency Efficient numerical modeling Geophysical methods Geophysics Machine learning machine learning framework Magnetic fields Mathematical models Modelling Neural networks Numerical methods Numerical models P-waves Partial differential equations partial differential equations (PDEs) Real time recurrent convolutional neural network (RCNN) Recurrent neural networks Remote sensing Seismic waves Spatial discrimination learning Three-dimensional displays |
title | An Efficient Platform for Numerical Modeling of Partial Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Platform%20for%20Numerical%20Modeling%20of%20Partial%20Differential%20Equations&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ji,%20Duofa&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3409620&rft_dat=%3Cproquest_ieee_%3E3078073702%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078073702&rft_id=info:pmid/&rft_ieee_id=10549528&rfr_iscdi=true |