Loading…

An Efficient Platform for Numerical Modeling of Partial Differential Equations

Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Main Authors: Ji, Duofa, Li, Chenxi, Zhai, Changhai, Cao, Zelin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833
cites cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Ji, Duofa
Li, Chenxi
Zhai, Changhai
Cao, Zelin
description Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.
doi_str_mv 10.1109/TGRS.2024.3409620
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3078073702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10549528</ieee_id><sourcerecordid>3078073702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4DlxZv9lcyy1VqHWovW8bLe7siVN2k1y8Nub0B68zPCG9-bBj5B7hAwRiqf1_PMro0B5xjgUksIFGaEQKgXJ-SUZARYypaqg1-SmaXYAyAXmI7KcVMnM-2CDq9pkVZrW13Gf9CNZdnsXgzVl8l5vXRmqn6T2ycrENvS35-C9i31oELNjZ9pQV80tufKmbNzdeY_J98tsPX1NFx_zt-lkkVpKeZv6jUBkTgqBUoKxuaQOvPIAuUeFVFrLuEUuN8qYzTaXnqP1tOhVAUoxNiaPp7-HWB8717R6V3ex6is1g1xBznKgvQtPLhvrponO60MMexN_NYIesOkBmx6w6TO2PvNwygTn3D-_4IWgiv0BBcdoRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078073702</pqid></control><display><type>article</type><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><source>IEEE Xplore (Online service)</source><creator>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</creator><creatorcontrib>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</creatorcontrib><description>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3409620</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic waves ; Artificial neural networks ; Deep learning ; Differential equations ; Efficiency ; Efficient numerical modeling ; Geophysical methods ; Geophysics ; Machine learning ; machine learning framework ; Magnetic fields ; Mathematical models ; Modelling ; Neural networks ; Numerical methods ; Numerical models ; P-waves ; Partial differential equations ; partial differential equations (PDEs) ; Real time ; recurrent convolutional neural network (RCNN) ; Recurrent neural networks ; Remote sensing ; Seismic waves ; Spatial discrimination learning ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</citedby><cites>FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</cites><orcidid>0009-0003-3185-8894 ; 0000-0001-9233-3889 ; 0000-0002-5537-5016 ; 0009-0007-2481-231X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10549528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Ji, Duofa</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhai, Changhai</creatorcontrib><creatorcontrib>Cao, Zelin</creatorcontrib><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</description><subject>Acoustic waves</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Efficiency</subject><subject>Efficient numerical modeling</subject><subject>Geophysical methods</subject><subject>Geophysics</subject><subject>Machine learning</subject><subject>machine learning framework</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Numerical models</subject><subject>P-waves</subject><subject>Partial differential equations</subject><subject>partial differential equations (PDEs)</subject><subject>Real time</subject><subject>recurrent convolutional neural network (RCNN)</subject><subject>Recurrent neural networks</subject><subject>Remote sensing</subject><subject>Seismic waves</subject><subject>Spatial discrimination learning</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4DlxZv9lcyy1VqHWovW8bLe7siVN2k1y8Nub0B68zPCG9-bBj5B7hAwRiqf1_PMro0B5xjgUksIFGaEQKgXJ-SUZARYypaqg1-SmaXYAyAXmI7KcVMnM-2CDq9pkVZrW13Gf9CNZdnsXgzVl8l5vXRmqn6T2ycrENvS35-C9i31oELNjZ9pQV80tufKmbNzdeY_J98tsPX1NFx_zt-lkkVpKeZv6jUBkTgqBUoKxuaQOvPIAuUeFVFrLuEUuN8qYzTaXnqP1tOhVAUoxNiaPp7-HWB8717R6V3ex6is1g1xBznKgvQtPLhvrponO60MMexN_NYIesOkBmx6w6TO2PvNwygTn3D-_4IWgiv0BBcdoRg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ji, Duofa</creator><creator>Li, Chenxi</creator><creator>Zhai, Changhai</creator><creator>Cao, Zelin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3185-8894</orcidid><orcidid>https://orcid.org/0000-0001-9233-3889</orcidid><orcidid>https://orcid.org/0000-0002-5537-5016</orcidid><orcidid>https://orcid.org/0009-0007-2481-231X</orcidid></search><sort><creationdate>2024</creationdate><title>An Efficient Platform for Numerical Modeling of Partial Differential Equations</title><author>Ji, Duofa ; Li, Chenxi ; Zhai, Changhai ; Cao, Zelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Efficiency</topic><topic>Efficient numerical modeling</topic><topic>Geophysical methods</topic><topic>Geophysics</topic><topic>Machine learning</topic><topic>machine learning framework</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Numerical models</topic><topic>P-waves</topic><topic>Partial differential equations</topic><topic>partial differential equations (PDEs)</topic><topic>Real time</topic><topic>recurrent convolutional neural network (RCNN)</topic><topic>Recurrent neural networks</topic><topic>Remote sensing</topic><topic>Seismic waves</topic><topic>Spatial discrimination learning</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Duofa</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhai, Changhai</creatorcontrib><creatorcontrib>Cao, Zelin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Duofa</au><au>Li, Chenxi</au><au>Zhai, Changhai</au><au>Cao, Zelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Platform for Numerical Modeling of Partial Differential Equations</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Solving partial differential equations (PDEs) is a fundamental task for computational electromagnetic and mechanical wave modeling, which hold utmost significance in remote sensing and geophysics. The importance of efficient PDEs solving methods lies in their ability to provide rapid simulations and real-time predictions. However, as the scale and dimensionality of the problems increase, the efficiency of current numerical methods becomes a concern. Therefore, this study leverages the inherent connection between the temporal-spatial stepping processes and recurrent neural networks (RNNs) as well as convolutional layers (CLs) to propose a general-purpose recurrent convolutional neural network (RCNN) platform for solving PDEs. The RCNN platform rigorously executes the temporal-spatial iterations involved in discretized forms of PDEs. Furthermore, benefiting from the latest advancements in deep learning, the platform enhances the efficiency of convolutional computations. By applying the RCNN platform to electromagnetic, acoustic wave, and seismic wave modeling, among others, its reliability and high efficiency in solving various high-dimensional PDEs are demonstrated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3409620</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-3185-8894</orcidid><orcidid>https://orcid.org/0000-0001-9233-3889</orcidid><orcidid>https://orcid.org/0000-0002-5537-5016</orcidid><orcidid>https://orcid.org/0009-0007-2481-231X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3078073702
source IEEE Xplore (Online service)
subjects Acoustic waves
Artificial neural networks
Deep learning
Differential equations
Efficiency
Efficient numerical modeling
Geophysical methods
Geophysics
Machine learning
machine learning framework
Magnetic fields
Mathematical models
Modelling
Neural networks
Numerical methods
Numerical models
P-waves
Partial differential equations
partial differential equations (PDEs)
Real time
recurrent convolutional neural network (RCNN)
Recurrent neural networks
Remote sensing
Seismic waves
Spatial discrimination learning
Three-dimensional displays
title An Efficient Platform for Numerical Modeling of Partial Differential Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Platform%20for%20Numerical%20Modeling%20of%20Partial%20Differential%20Equations&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ji,%20Duofa&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3409620&rft_dat=%3Cproquest_ieee_%3E3078073702%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-fb5113e6551660ac762e0f8f007f18126cc34c146b8aabd76f41cf298aa908833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078073702&rft_id=info:pmid/&rft_ieee_id=10549528&rfr_iscdi=true