Loading…

Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution

The gradual depletion of fossil fuel reserves and the sharp rise in the cost of fossil fuels have generated a frenzy of activities in the quest to search for renewable source-based alternatives. Epoxides are an intermediate product that can be converted into value-added polymers. In the industry, ep...

Full description

Saved in:
Bibliographic Details
Published in:Biomass conversion and biorefinery 2024-06, Vol.14 (12), p.13303-13310
Main Authors: Azmi, Intan Suhada, Ozir, Tunku Arif Zafri Tunku, Rasib, Ismail Md, Nurherdiana, Silvana Dwi, Jalil, Mohd Jumain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The gradual depletion of fossil fuel reserves and the sharp rise in the cost of fossil fuels have generated a frenzy of activities in the quest to search for renewable source-based alternatives. Epoxides are an intermediate product that can be converted into value-added polymers. In the industry, epoxidation of vegetable oils is most frequently carried out with performic and peracetic acids. The aim of this study is to investigate the influence of the type of oxygen carrier (formic acid, acetic acid, and hybrid solution of formic and acetic acid) on the epoxidation of palm oleic acid. The peracids were formed in situ in this study. Based on the results, the highest relative conversion to oxirane (RCO) is achieved using formic acid, with a value of 82% at a reaction time of 25 min. Interestingly, a high RCO (82%) can also be achieved by using a hybrid solution of formic and acetic acid at a molar ratio of 1:1. The use of a hybrid oxygen carrier solution can help minimize the use of formic acid, which would create a strong acidic environment. In addition, the kinetic model is capable of predicting the reaction kinetics of the epoxidation process since the simulation results show good agreement with the experimental data, particularly for a formic acid/acetic acid molar ratio of 0.5:1.0.
ISSN:2190-6815
2190-6823
DOI:10.1007/s13399-022-03325-z