Loading…
Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization
The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to invest...
Saved in:
Published in: | Arabian journal for science and engineering (2011) 2024, Vol.49 (8), p.11457-11478 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613 |
container_end_page | 11478 |
container_issue | 8 |
container_start_page | 11457 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 49 |
creator | Kumar, Sudhir Ghoshal, Sanjoy Kumar Arora, Pawan Kumar Kumar, Harish Nagdeve, Leeladhar |
description | The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current (
B
) > Gap voltage (
A
) > Pulse on Time (
C
). Remarkably, Pulse current (
B
) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG
experiment
) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining. |
doi_str_mv | 10.1007/s13369-024-08711-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078635691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078635691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsNS-gKuAC1fRXGYmE3elVi20tFAr7kImk7bRaWZMUkVfwlc2bQV3rs4P_-XAlyTnGF1hhNi1x5TmHCKSQlQwjGF2lHQI5himpMDHe01hlrPn06TnvSlRWlCeYUw7yffC1o16NXYF-qP5KCUITKQL2noTjALzII2ttfdRaV1fejBrohmMrG_AzGllvGksGNq1tEpvogOejARzOLydgA8T1mDQtK12YFhrFVxTaQ-krcBkWwfzLp2RQYNpG8zGfMkQp86Sk6Wsve793m6yuBs-Dh7geHo_GvTHUBGGAsSS42UqeU6qnKlyyWhJSlJklFKuC1QpxqtUFyVGZWSg8opxmUoS3SotVY5pN7k47LauedtqH8RLs3U2vhQUsSKnWc53KXJIKdd47_RStM5spPsUGIkde3FgLyJ7sWcvsliih5KPYbvS7m_6n9YP8LSH9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078635691</pqid></control><display><type>article</type><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><source>Springer Link</source><creator>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</creator><creatorcontrib>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</creatorcontrib><description>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current (
B
) > Gap voltage (
A
) > Pulse on Time (
C
). Remarkably, Pulse current (
B
) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG
experiment
) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-024-08711-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Copper ; EDM electrodes ; Electric discharge machining ; Electrodes ; Engineering ; Error reduction ; Humanities and Social Sciences ; Martensitic stainless steels ; multidisciplinary ; Multivariate analysis ; Principal components analysis ; Research Article-Mechanical Engineering ; Response surface methodology ; Science ; Stainless steel ; Variance analysis</subject><ispartof>Arabian journal for science and engineering (2011), 2024, Vol.49 (8), p.11457-11478</ispartof><rights>King Fahd University of Petroleum & Minerals 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</cites><orcidid>0000-0002-8526-8975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Ghoshal, Sanjoy Kumar</creatorcontrib><creatorcontrib>Arora, Pawan Kumar</creatorcontrib><creatorcontrib>Kumar, Harish</creatorcontrib><creatorcontrib>Nagdeve, Leeladhar</creatorcontrib><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current (
B
) > Gap voltage (
A
) > Pulse on Time (
C
). Remarkably, Pulse current (
B
) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG
experiment
) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</description><subject>Copper</subject><subject>EDM electrodes</subject><subject>Electric discharge machining</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Humanities and Social Sciences</subject><subject>Martensitic stainless steels</subject><subject>multidisciplinary</subject><subject>Multivariate analysis</subject><subject>Principal components analysis</subject><subject>Research Article-Mechanical Engineering</subject><subject>Response surface methodology</subject><subject>Science</subject><subject>Stainless steel</subject><subject>Variance analysis</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhgdRsNS-gKuAC1fRXGYmE3elVi20tFAr7kImk7bRaWZMUkVfwlc2bQV3rs4P_-XAlyTnGF1hhNi1x5TmHCKSQlQwjGF2lHQI5himpMDHe01hlrPn06TnvSlRWlCeYUw7yffC1o16NXYF-qP5KCUITKQL2noTjALzII2ttfdRaV1fejBrohmMrG_AzGllvGksGNq1tEpvogOejARzOLydgA8T1mDQtK12YFhrFVxTaQ-krcBkWwfzLp2RQYNpG8zGfMkQp86Sk6Wsve793m6yuBs-Dh7geHo_GvTHUBGGAsSS42UqeU6qnKlyyWhJSlJklFKuC1QpxqtUFyVGZWSg8opxmUoS3SotVY5pN7k47LauedtqH8RLs3U2vhQUsSKnWc53KXJIKdd47_RStM5spPsUGIkde3FgLyJ7sWcvsliih5KPYbvS7m_6n9YP8LSH9A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kumar, Sudhir</creator><creator>Ghoshal, Sanjoy Kumar</creator><creator>Arora, Pawan Kumar</creator><creator>Kumar, Harish</creator><creator>Nagdeve, Leeladhar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8526-8975</orcidid></search><sort><creationdate>2024</creationdate><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><author>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Copper</topic><topic>EDM electrodes</topic><topic>Electric discharge machining</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Humanities and Social Sciences</topic><topic>Martensitic stainless steels</topic><topic>multidisciplinary</topic><topic>Multivariate analysis</topic><topic>Principal components analysis</topic><topic>Research Article-Mechanical Engineering</topic><topic>Response surface methodology</topic><topic>Science</topic><topic>Stainless steel</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Ghoshal, Sanjoy Kumar</creatorcontrib><creatorcontrib>Arora, Pawan Kumar</creatorcontrib><creatorcontrib>Kumar, Harish</creatorcontrib><creatorcontrib>Nagdeve, Leeladhar</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sudhir</au><au>Ghoshal, Sanjoy Kumar</au><au>Arora, Pawan Kumar</au><au>Kumar, Harish</au><au>Nagdeve, Leeladhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2024</date><risdate>2024</risdate><volume>49</volume><issue>8</issue><spage>11457</spage><epage>11478</epage><pages>11457-11478</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current (
B
) > Gap voltage (
A
) > Pulse on Time (
C
). Remarkably, Pulse current (
B
) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG
experiment
) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-024-08711-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8526-8975</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2024, Vol.49 (8), p.11457-11478 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_3078635691 |
source | Springer Link |
subjects | Copper EDM electrodes Electric discharge machining Electrodes Engineering Error reduction Humanities and Social Sciences Martensitic stainless steels multidisciplinary Multivariate analysis Principal components analysis Research Article-Mechanical Engineering Response surface methodology Science Stainless steel Variance analysis |
title | Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20AISI420%20Martensitic%20Stainless%20Steel's%20Potential:%20Precision%20Enhancement%20Via%20S-EDM%20with%20Copper%20Electrodes%20and%20Multivariate%20Optimization&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Kumar,%20Sudhir&rft.date=2024&rft.volume=49&rft.issue=8&rft.spage=11457&rft.epage=11478&rft.pages=11457-11478&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-024-08711-5&rft_dat=%3Cproquest_cross%3E3078635691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078635691&rft_id=info:pmid/&rfr_iscdi=true |