Loading…

Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization

The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to invest...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2024, Vol.49 (8), p.11457-11478
Main Authors: Kumar, Sudhir, Ghoshal, Sanjoy Kumar, Arora, Pawan Kumar, Kumar, Harish, Nagdeve, Leeladhar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613
container_end_page 11478
container_issue 8
container_start_page 11457
container_title Arabian journal for science and engineering (2011)
container_volume 49
creator Kumar, Sudhir
Ghoshal, Sanjoy Kumar
Arora, Pawan Kumar
Kumar, Harish
Nagdeve, Leeladhar
description The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current ( B ) > Gap voltage ( A ) > Pulse on Time ( C ). Remarkably, Pulse current ( B ) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG experiment ) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.
doi_str_mv 10.1007/s13369-024-08711-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078635691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078635691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsNS-gKuAC1fRXGYmE3elVi20tFAr7kImk7bRaWZMUkVfwlc2bQV3rs4P_-XAlyTnGF1hhNi1x5TmHCKSQlQwjGF2lHQI5himpMDHe01hlrPn06TnvSlRWlCeYUw7yffC1o16NXYF-qP5KCUITKQL2noTjALzII2ttfdRaV1fejBrohmMrG_AzGllvGksGNq1tEpvogOejARzOLydgA8T1mDQtK12YFhrFVxTaQ-krcBkWwfzLp2RQYNpG8zGfMkQp86Sk6Wsve793m6yuBs-Dh7geHo_GvTHUBGGAsSS42UqeU6qnKlyyWhJSlJklFKuC1QpxqtUFyVGZWSg8opxmUoS3SotVY5pN7k47LauedtqH8RLs3U2vhQUsSKnWc53KXJIKdd47_RStM5spPsUGIkde3FgLyJ7sWcvsliih5KPYbvS7m_6n9YP8LSH9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078635691</pqid></control><display><type>article</type><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><source>Springer Link</source><creator>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</creator><creatorcontrib>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</creatorcontrib><description>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current ( B ) &gt; Gap voltage ( A ) &gt; Pulse on Time ( C ). Remarkably, Pulse current ( B ) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG experiment ) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-024-08711-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Copper ; EDM electrodes ; Electric discharge machining ; Electrodes ; Engineering ; Error reduction ; Humanities and Social Sciences ; Martensitic stainless steels ; multidisciplinary ; Multivariate analysis ; Principal components analysis ; Research Article-Mechanical Engineering ; Response surface methodology ; Science ; Stainless steel ; Variance analysis</subject><ispartof>Arabian journal for science and engineering (2011), 2024, Vol.49 (8), p.11457-11478</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</cites><orcidid>0000-0002-8526-8975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Ghoshal, Sanjoy Kumar</creatorcontrib><creatorcontrib>Arora, Pawan Kumar</creatorcontrib><creatorcontrib>Kumar, Harish</creatorcontrib><creatorcontrib>Nagdeve, Leeladhar</creatorcontrib><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current ( B ) &gt; Gap voltage ( A ) &gt; Pulse on Time ( C ). Remarkably, Pulse current ( B ) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG experiment ) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</description><subject>Copper</subject><subject>EDM electrodes</subject><subject>Electric discharge machining</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Humanities and Social Sciences</subject><subject>Martensitic stainless steels</subject><subject>multidisciplinary</subject><subject>Multivariate analysis</subject><subject>Principal components analysis</subject><subject>Research Article-Mechanical Engineering</subject><subject>Response surface methodology</subject><subject>Science</subject><subject>Stainless steel</subject><subject>Variance analysis</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhgdRsNS-gKuAC1fRXGYmE3elVi20tFAr7kImk7bRaWZMUkVfwlc2bQV3rs4P_-XAlyTnGF1hhNi1x5TmHCKSQlQwjGF2lHQI5himpMDHe01hlrPn06TnvSlRWlCeYUw7yffC1o16NXYF-qP5KCUITKQL2noTjALzII2ttfdRaV1fejBrohmMrG_AzGllvGksGNq1tEpvogOejARzOLydgA8T1mDQtK12YFhrFVxTaQ-krcBkWwfzLp2RQYNpG8zGfMkQp86Sk6Wsve793m6yuBs-Dh7geHo_GvTHUBGGAsSS42UqeU6qnKlyyWhJSlJklFKuC1QpxqtUFyVGZWSg8opxmUoS3SotVY5pN7k47LauedtqH8RLs3U2vhQUsSKnWc53KXJIKdd47_RStM5spPsUGIkde3FgLyJ7sWcvsliih5KPYbvS7m_6n9YP8LSH9A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kumar, Sudhir</creator><creator>Ghoshal, Sanjoy Kumar</creator><creator>Arora, Pawan Kumar</creator><creator>Kumar, Harish</creator><creator>Nagdeve, Leeladhar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8526-8975</orcidid></search><sort><creationdate>2024</creationdate><title>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</title><author>Kumar, Sudhir ; Ghoshal, Sanjoy Kumar ; Arora, Pawan Kumar ; Kumar, Harish ; Nagdeve, Leeladhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Copper</topic><topic>EDM electrodes</topic><topic>Electric discharge machining</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Humanities and Social Sciences</topic><topic>Martensitic stainless steels</topic><topic>multidisciplinary</topic><topic>Multivariate analysis</topic><topic>Principal components analysis</topic><topic>Research Article-Mechanical Engineering</topic><topic>Response surface methodology</topic><topic>Science</topic><topic>Stainless steel</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Ghoshal, Sanjoy Kumar</creatorcontrib><creatorcontrib>Arora, Pawan Kumar</creatorcontrib><creatorcontrib>Kumar, Harish</creatorcontrib><creatorcontrib>Nagdeve, Leeladhar</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sudhir</au><au>Ghoshal, Sanjoy Kumar</au><au>Arora, Pawan Kumar</au><au>Kumar, Harish</au><au>Nagdeve, Leeladhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2024</date><risdate>2024</risdate><volume>49</volume><issue>8</issue><spage>11457</spage><epage>11478</epage><pages>11457-11478</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>The current study explores the precision enhancement of AISI420 Martensitic Stainless Steel (MSS) using sinking-electrical discharge machining (S-EDM) with Copper electrodes, which is a unique combination of materials and machining process and conducts a comprehensive multivariate analysis to investigate the correlation between machine control variables (MCV) and measured machining performance (MMP) in the context of AISI420 Martensitic Stainless Steel and Sinking-Electrical Discharge Machining. The analysis of variance (ANOVA) establishes the hierarchy of machine control variables influence: Pulse current ( B ) &gt; Gap voltage ( A ) &gt; Pulse on Time ( C ). Remarkably, Pulse current ( B ) emerges as the paramount parameter, thus constituting a cornerstone of this study's findings. This research article utilizes the RSM–GRA–PCA methodology, which combines response surface methodology (RSM), grey relational analysis (GRA), and principal component analysis (PCA) to optimize the machining process. Using traditional RSM–GRA technique and RSM–GRA–PCA methodology, the experimental Grey Relational Grade (GRG experiment ) are achieved 0.8048 and 0.9817, respectively. The validation test has been performed to confirm the fittest method positions. The percentage significance of significant factor is also improved from 64.63 to 79.71% and error is reduced from 5.22 to 1.68% using RSM–GRA–PCA methodology with improved GRG of 0.068. This integrated approach improves the grey relational grade (GRG) and reduces errors, leading to more accurate and efficient machining.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-024-08711-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8526-8975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2024, Vol.49 (8), p.11457-11478
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_3078635691
source Springer Link
subjects Copper
EDM electrodes
Electric discharge machining
Electrodes
Engineering
Error reduction
Humanities and Social Sciences
Martensitic stainless steels
multidisciplinary
Multivariate analysis
Principal components analysis
Research Article-Mechanical Engineering
Response surface methodology
Science
Stainless steel
Variance analysis
title Unlocking AISI420 Martensitic Stainless Steel's Potential: Precision Enhancement Via S-EDM with Copper Electrodes and Multivariate Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20AISI420%20Martensitic%20Stainless%20Steel's%20Potential:%20Precision%20Enhancement%20Via%20S-EDM%20with%20Copper%20Electrodes%20and%20Multivariate%20Optimization&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Kumar,%20Sudhir&rft.date=2024&rft.volume=49&rft.issue=8&rft.spage=11457&rft.epage=11478&rft.pages=11457-11478&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-024-08711-5&rft_dat=%3Cproquest_cross%3E3078635691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1a91f4a962d67cbf73b2b2853339e80dc79d4e8b10b428c6d79a4a2339d4bc613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078635691&rft_id=info:pmid/&rfr_iscdi=true