Loading…

An inequality for entangled qutrits in SU(3) basis

It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutri...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2024-07, Vol.23 (7), Article 267
Main Authors: Sen, Surajit, Dey, Tushar Kanti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843
container_end_page
container_issue 7
container_start_page
container_title Quantum information processing
container_volume 23
creator Sen, Surajit
Dey, Tushar Kanti
description It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new 2 inequality, in addition to usual Bell-CHSH type 2 2 inequality, which is significant from the experimental point of view.
doi_str_mv 10.1007/s11128-024-04477-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078635697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078635697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRWGAwvGc7tjNWFQWkSgzQ2XISu0oVktZ2hv49gSDBxPTucO590iHkGuEeAdRDRESmKTBBQQilaHFCZpgrTpFzdvonn5OLGHcADKWWM8IWXdZ07jDYtknHzPchc12y3bZ1dXYYUmhSHIHsbXPL77LSxiZekjNv2-iufu6cbFaP78tnun59elku1rRiAIm6urZKccm156KwuQRZVblgZV4hcg-2YqrEuqxV7nzhau209V6gttqWSgs-JzfT7j70h8HFZHb9ELrxpeGgtOS5LNRIsYmqQh9jcN7sQ_Nhw9EgmC83ZnJjRjfm240pxhKfSnGEu60Lv9P_tD4BaSRloA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078635697</pqid></control><display><type>article</type><title>An inequality for entangled qutrits in SU(3) basis</title><source>Springer Nature</source><creator>Sen, Surajit ; Dey, Tushar Kanti</creator><creatorcontrib>Sen, Surajit ; Dey, Tushar Kanti</creatorcontrib><description>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new 2 inequality, in addition to usual Bell-CHSH type 2 2 inequality, which is significant from the experimental point of view.</description><identifier>ISSN: 1573-1332</identifier><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04477-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Entangled states ; Mathematical Physics ; Particle physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Qubits (quantum computing) ; Spintronics ; Tensors</subject><ispartof>Quantum information processing, 2024-07, Vol.23 (7), Article 267</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sen, Surajit</creatorcontrib><creatorcontrib>Dey, Tushar Kanti</creatorcontrib><title>An inequality for entangled qutrits in SU(3) basis</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new 2 inequality, in addition to usual Bell-CHSH type 2 2 inequality, which is significant from the experimental point of view.</description><subject>Data Structures and Information Theory</subject><subject>Entangled states</subject><subject>Mathematical Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Spintronics</subject><subject>Tensors</subject><issn>1573-1332</issn><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yRWGAwvGc7tjNWFQWkSgzQ2XISu0oVktZ2hv49gSDBxPTucO590iHkGuEeAdRDRESmKTBBQQilaHFCZpgrTpFzdvonn5OLGHcADKWWM8IWXdZ07jDYtknHzPchc12y3bZ1dXYYUmhSHIHsbXPL77LSxiZekjNv2-iufu6cbFaP78tnun59elku1rRiAIm6urZKccm156KwuQRZVblgZV4hcg-2YqrEuqxV7nzhau209V6gttqWSgs-JzfT7j70h8HFZHb9ELrxpeGgtOS5LNRIsYmqQh9jcN7sQ_Nhw9EgmC83ZnJjRjfm240pxhKfSnGEu60Lv9P_tD4BaSRloA</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Sen, Surajit</creator><creator>Dey, Tushar Kanti</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240710</creationdate><title>An inequality for entangled qutrits in SU(3) basis</title><author>Sen, Surajit ; Dey, Tushar Kanti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data Structures and Information Theory</topic><topic>Entangled states</topic><topic>Mathematical Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Spintronics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Surajit</creatorcontrib><creatorcontrib>Dey, Tushar Kanti</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Surajit</au><au>Dey, Tushar Kanti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inequality for entangled qutrits in SU(3) basis</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-07-10</date><risdate>2024</risdate><volume>23</volume><issue>7</issue><artnum>267</artnum><issn>1573-1332</issn><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new 2 inequality, in addition to usual Bell-CHSH type 2 2 inequality, which is significant from the experimental point of view.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04477-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1573-1332
ispartof Quantum information processing, 2024-07, Vol.23 (7), Article 267
issn 1573-1332
1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_3078635697
source Springer Nature
subjects Data Structures and Information Theory
Entangled states
Mathematical Physics
Particle physics
Physics
Physics and Astronomy
Quantum Computing
Quantum entanglement
Quantum Information Technology
Quantum Physics
Qubits (quantum computing)
Spintronics
Tensors
title An inequality for entangled qutrits in SU(3) basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inequality%20for%20entangled%20qutrits%20in%20SU(3)%20basis&rft.jtitle=Quantum%20information%20processing&rft.au=Sen,%20Surajit&rft.date=2024-07-10&rft.volume=23&rft.issue=7&rft.artnum=267&rft.issn=1573-1332&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04477-9&rft_dat=%3Cproquest_cross%3E3078635697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078635697&rft_id=info:pmid/&rfr_iscdi=true