Loading…
An inequality for entangled qutrits in SU(3) basis
It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two non-local qubits and qutri...
Saved in:
Published in: | Quantum information processing 2024-07, Vol.23 (7), Article 267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 23 |
creator | Sen, Surajit Dey, Tushar Kanti |
description | It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two
non-local
qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new
2
inequality, in addition to usual Bell-CHSH type
2
2
inequality, which is significant from the experimental point of view. |
doi_str_mv | 10.1007/s11128-024-04477-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3078635697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078635697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRWGAwvGc7tjNWFQWkSgzQ2XISu0oVktZ2hv49gSDBxPTucO590iHkGuEeAdRDRESmKTBBQQilaHFCZpgrTpFzdvonn5OLGHcADKWWM8IWXdZ07jDYtknHzPchc12y3bZ1dXYYUmhSHIHsbXPL77LSxiZekjNv2-iufu6cbFaP78tnun59elku1rRiAIm6urZKccm156KwuQRZVblgZV4hcg-2YqrEuqxV7nzhau209V6gttqWSgs-JzfT7j70h8HFZHb9ELrxpeGgtOS5LNRIsYmqQh9jcN7sQ_Nhw9EgmC83ZnJjRjfm240pxhKfSnGEu60Lv9P_tD4BaSRloA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078635697</pqid></control><display><type>article</type><title>An inequality for entangled qutrits in SU(3) basis</title><source>Springer Nature</source><creator>Sen, Surajit ; Dey, Tushar Kanti</creator><creatorcontrib>Sen, Surajit ; Dey, Tushar Kanti</creatorcontrib><description>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two
non-local
qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new
2
inequality, in addition to usual Bell-CHSH type
2
2
inequality, which is significant from the experimental point of view.</description><identifier>ISSN: 1573-1332</identifier><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-024-04477-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Entangled states ; Mathematical Physics ; Particle physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Qubits (quantum computing) ; Spintronics ; Tensors</subject><ispartof>Quantum information processing, 2024-07, Vol.23 (7), Article 267</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sen, Surajit</creatorcontrib><creatorcontrib>Dey, Tushar Kanti</creatorcontrib><title>An inequality for entangled qutrits in SU(3) basis</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two
non-local
qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new
2
inequality, in addition to usual Bell-CHSH type
2
2
inequality, which is significant from the experimental point of view.</description><subject>Data Structures and Information Theory</subject><subject>Entangled states</subject><subject>Mathematical Physics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Qubits (quantum computing)</subject><subject>Spintronics</subject><subject>Tensors</subject><issn>1573-1332</issn><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwA0yRWGAwvGc7tjNWFQWkSgzQ2XISu0oVktZ2hv49gSDBxPTucO590iHkGuEeAdRDRESmKTBBQQilaHFCZpgrTpFzdvonn5OLGHcADKWWM8IWXdZ07jDYtknHzPchc12y3bZ1dXYYUmhSHIHsbXPL77LSxiZekjNv2-iufu6cbFaP78tnun59elku1rRiAIm6urZKccm156KwuQRZVblgZV4hcg-2YqrEuqxV7nzhau209V6gttqWSgs-JzfT7j70h8HFZHb9ELrxpeGgtOS5LNRIsYmqQh9jcN7sQ_Nhw9EgmC83ZnJjRjfm240pxhKfSnGEu60Lv9P_tD4BaSRloA</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Sen, Surajit</creator><creator>Dey, Tushar Kanti</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240710</creationdate><title>An inequality for entangled qutrits in SU(3) basis</title><author>Sen, Surajit ; Dey, Tushar Kanti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data Structures and Information Theory</topic><topic>Entangled states</topic><topic>Mathematical Physics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Qubits (quantum computing)</topic><topic>Spintronics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Surajit</creatorcontrib><creatorcontrib>Dey, Tushar Kanti</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Surajit</au><au>Dey, Tushar Kanti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inequality for entangled qutrits in SU(3) basis</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2024-07-10</date><risdate>2024</risdate><volume>23</volume><issue>7</issue><artnum>267</artnum><issn>1573-1332</issn><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>It is well known from the representation theory of particle physics that the tensor product of two fundamental representation of SU(2) and SU(3) group can be decomposed to obtain the desired spectrum of the physical states. In this paper, we apply this tenet in case of two
non-local
qubits and qutrits, which leads the complete spectrum of their entangled states in their respective basis. For qutrit system, the study of their properties reveals the existence of a new
2
inequality, in addition to usual Bell-CHSH type
2
2
inequality, which is significant from the experimental point of view.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-024-04477-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-1332 |
ispartof | Quantum information processing, 2024-07, Vol.23 (7), Article 267 |
issn | 1573-1332 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_3078635697 |
source | Springer Nature |
subjects | Data Structures and Information Theory Entangled states Mathematical Physics Particle physics Physics Physics and Astronomy Quantum Computing Quantum entanglement Quantum Information Technology Quantum Physics Qubits (quantum computing) Spintronics Tensors |
title | An inequality for entangled qutrits in SU(3) basis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inequality%20for%20entangled%20qutrits%20in%20SU(3)%20basis&rft.jtitle=Quantum%20information%20processing&rft.au=Sen,%20Surajit&rft.date=2024-07-10&rft.volume=23&rft.issue=7&rft.artnum=267&rft.issn=1573-1332&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-024-04477-9&rft_dat=%3Cproquest_cross%3E3078635697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-edda773638f349a5606cc542b5c113f0ac27b1dbd75ef9ed8e8aff418a8ab7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078635697&rft_id=info:pmid/&rfr_iscdi=true |