Loading…
Development of a gyrokinetic-MHD energetic particle simulation code. II. Linear simulations of Alfvén eigenmodes driven by energetic particles
We have developed a hybrid code GMEC: Gyro-kinetic Magnetohydrodynamics (MHD) Energetic-particle Code that can numerically simulate energetic particle-driven Alfvén eigenmodes and energetic particle transport in tokamak plasmas. In order to resolve the Alfvén eigenmodes with high toroidal numbers ef...
Saved in:
Published in: | Physics of plasmas 2024-07, Vol.31 (7) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a hybrid code GMEC: Gyro-kinetic Magnetohydrodynamics (MHD) Energetic-particle Code that can numerically simulate energetic particle-driven Alfvén eigenmodes and energetic particle transport in tokamak plasmas. In order to resolve the Alfvén eigenmodes with high toroidal numbers effectively, the field-aligned coordinates and meshes are adopted. The extended MHD equations are solved with the five-point finite difference method and the fourth-order Runge–Kutta method. The gyrokinetic equations are solved by particle-in-cell method for the perturbed energetic particle pressures that are coupled into the MHD equations. Up to now, a simplified version of the hybrid code has been completed with several successful verifications, including linear simulations of toroidal Alfvén eigenmodes and reversed shear Alfvén eigenmodes. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0206762 |