Loading…

Stability of cycles and survival in a jungle game with four species

The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungl...

Full description

Saved in:
Bibliographic Details
Published in:Dynamical systems (London, England) England), 2024-07, Vol.39 (3), p.389-407
Main Authors: Castro, Sofia B. S. D., Ferreira, Ana M. J., Labouriau, Isabel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3
container_end_page 407
container_issue 3
container_start_page 389
container_title Dynamical systems (London, England)
container_volume 39
creator Castro, Sofia B. S. D.
Ferreira, Ana M. J.
Labouriau, Isabel S.
description The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.
doi_str_mv 10.1080/14689367.2024.2307515
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_3080017050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080017050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43XnSfLS9U4ZOYeCFeh3SNJkZWTuTdqP_3oxNL7063-8550HolsCMQAn3hImyoqKY5ZCzWU6h4ISfockhn1W04Od_vigu0VWMawBSMFJM0Py9V7Xzrh9xZ7EetTcRq7bBcQg7t1MeuxYrvB7alTd4pTYG713_hW03BBy3RjsTr9GFVT6am5Odos_np4_5S7Z8W7zOH5eZzgXtM1NZAawsapULqKGsRMkMMM4MJSloRJVKltuGWJNzoamtodG0IWXN6oooOkV3R91t6L4HE3u5Tle0aaWkiUN6CTikLn7s0qGLMRgrt8FtVBglAXngJX95yQMveeKV5h6Oc661XdiofRd8I3s1-i7YoFrt0pr_JX4AlxRwuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080017050</pqid></control><display><type>article</type><title>Stability of cycles and survival in a jungle game with four species</title><source>Taylor and Francis Science and Technology Collection</source><creator>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</creator><creatorcontrib>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</creatorcontrib><description>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2024.2307515</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>asymptotic stability ; Cutting tools ; essential asymptotic stability ; Food chains ; Games ; Heteroclinic cycle ; heteroclinic network ; population dynamics ; Stability</subject><ispartof>Dynamical systems (London, England), 2024-07, Vol.39 (3), p.389-407</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castro, Sofia B. S. D.</creatorcontrib><creatorcontrib>Ferreira, Ana M. J.</creatorcontrib><creatorcontrib>Labouriau, Isabel S.</creatorcontrib><title>Stability of cycles and survival in a jungle game with four species</title><title>Dynamical systems (London, England)</title><description>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</description><subject>asymptotic stability</subject><subject>Cutting tools</subject><subject>essential asymptotic stability</subject><subject>Food chains</subject><subject>Games</subject><subject>Heteroclinic cycle</subject><subject>heteroclinic network</subject><subject>population dynamics</subject><subject>Stability</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kF1LwzAUhoMoOKc_QQh43XnSfLS9U4ZOYeCFeh3SNJkZWTuTdqP_3oxNL7063-8550HolsCMQAn3hImyoqKY5ZCzWU6h4ISfockhn1W04Od_vigu0VWMawBSMFJM0Py9V7Xzrh9xZ7EetTcRq7bBcQg7t1MeuxYrvB7alTd4pTYG713_hW03BBy3RjsTr9GFVT6am5Odos_np4_5S7Z8W7zOH5eZzgXtM1NZAawsapULqKGsRMkMMM4MJSloRJVKltuGWJNzoamtodG0IWXN6oooOkV3R91t6L4HE3u5Tle0aaWkiUN6CTikLn7s0qGLMRgrt8FtVBglAXngJX95yQMveeKV5h6Oc661XdiofRd8I3s1-i7YoFrt0pr_JX4AlxRwuQ</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Castro, Sofia B. S. D.</creator><creator>Ferreira, Ana M. J.</creator><creator>Labouriau, Isabel S.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240702</creationdate><title>Stability of cycles and survival in a jungle game with four species</title><author>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymptotic stability</topic><topic>Cutting tools</topic><topic>essential asymptotic stability</topic><topic>Food chains</topic><topic>Games</topic><topic>Heteroclinic cycle</topic><topic>heteroclinic network</topic><topic>population dynamics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Sofia B. S. D.</creatorcontrib><creatorcontrib>Ferreira, Ana M. J.</creatorcontrib><creatorcontrib>Labouriau, Isabel S.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Sofia B. S. D.</au><au>Ferreira, Ana M. J.</au><au>Labouriau, Isabel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of cycles and survival in a jungle game with four species</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2024-07-02</date><risdate>2024</risdate><volume>39</volume><issue>3</issue><spage>389</spage><epage>407</epage><pages>389-407</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14689367.2024.2307515</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-9367
ispartof Dynamical systems (London, England), 2024-07, Vol.39 (3), p.389-407
issn 1468-9367
1468-9375
language eng
recordid cdi_proquest_journals_3080017050
source Taylor and Francis Science and Technology Collection
subjects asymptotic stability
Cutting tools
essential asymptotic stability
Food chains
Games
Heteroclinic cycle
heteroclinic network
population dynamics
Stability
title Stability of cycles and survival in a jungle game with four species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20cycles%20and%20survival%20in%20a%20jungle%20game%20with%20four%20species&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Castro,%20Sofia%20B.%20S.%20D.&rft.date=2024-07-02&rft.volume=39&rft.issue=3&rft.spage=389&rft.epage=407&rft.pages=389-407&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2024.2307515&rft_dat=%3Cproquest_infor%3E3080017050%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080017050&rft_id=info:pmid/&rfr_iscdi=true