Loading…
Stability of cycles and survival in a jungle game with four species
The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungl...
Saved in:
Published in: | Dynamical systems (London, England) England), 2024-07, Vol.39 (3), p.389-407 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3 |
container_end_page | 407 |
container_issue | 3 |
container_start_page | 389 |
container_title | Dynamical systems (London, England) |
container_volume | 39 |
creator | Castro, Sofia B. S. D. Ferreira, Ana M. J. Labouriau, Isabel S. |
description | The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players. |
doi_str_mv | 10.1080/14689367.2024.2307515 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_3080017050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080017050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43XnSfLS9U4ZOYeCFeh3SNJkZWTuTdqP_3oxNL7063-8550HolsCMQAn3hImyoqKY5ZCzWU6h4ISfockhn1W04Od_vigu0VWMawBSMFJM0Py9V7Xzrh9xZ7EetTcRq7bBcQg7t1MeuxYrvB7alTd4pTYG713_hW03BBy3RjsTr9GFVT6am5Odos_np4_5S7Z8W7zOH5eZzgXtM1NZAawsapULqKGsRMkMMM4MJSloRJVKltuGWJNzoamtodG0IWXN6oooOkV3R91t6L4HE3u5Tle0aaWkiUN6CTikLn7s0qGLMRgrt8FtVBglAXngJX95yQMveeKV5h6Oc661XdiofRd8I3s1-i7YoFrt0pr_JX4AlxRwuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080017050</pqid></control><display><type>article</type><title>Stability of cycles and survival in a jungle game with four species</title><source>Taylor and Francis Science and Technology Collection</source><creator>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</creator><creatorcontrib>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</creatorcontrib><description>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2024.2307515</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>asymptotic stability ; Cutting tools ; essential asymptotic stability ; Food chains ; Games ; Heteroclinic cycle ; heteroclinic network ; population dynamics ; Stability</subject><ispartof>Dynamical systems (London, England), 2024-07, Vol.39 (3), p.389-407</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castro, Sofia B. S. D.</creatorcontrib><creatorcontrib>Ferreira, Ana M. J.</creatorcontrib><creatorcontrib>Labouriau, Isabel S.</creatorcontrib><title>Stability of cycles and survival in a jungle game with four species</title><title>Dynamical systems (London, England)</title><description>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</description><subject>asymptotic stability</subject><subject>Cutting tools</subject><subject>essential asymptotic stability</subject><subject>Food chains</subject><subject>Games</subject><subject>Heteroclinic cycle</subject><subject>heteroclinic network</subject><subject>population dynamics</subject><subject>Stability</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kF1LwzAUhoMoOKc_QQh43XnSfLS9U4ZOYeCFeh3SNJkZWTuTdqP_3oxNL7063-8550HolsCMQAn3hImyoqKY5ZCzWU6h4ISfockhn1W04Od_vigu0VWMawBSMFJM0Py9V7Xzrh9xZ7EetTcRq7bBcQg7t1MeuxYrvB7alTd4pTYG713_hW03BBy3RjsTr9GFVT6am5Odos_np4_5S7Z8W7zOH5eZzgXtM1NZAawsapULqKGsRMkMMM4MJSloRJVKltuGWJNzoamtodG0IWXN6oooOkV3R91t6L4HE3u5Tle0aaWkiUN6CTikLn7s0qGLMRgrt8FtVBglAXngJX95yQMveeKV5h6Oc661XdiofRd8I3s1-i7YoFrt0pr_JX4AlxRwuQ</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Castro, Sofia B. S. D.</creator><creator>Ferreira, Ana M. J.</creator><creator>Labouriau, Isabel S.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240702</creationdate><title>Stability of cycles and survival in a jungle game with four species</title><author>Castro, Sofia B. S. D. ; Ferreira, Ana M. J. ; Labouriau, Isabel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymptotic stability</topic><topic>Cutting tools</topic><topic>essential asymptotic stability</topic><topic>Food chains</topic><topic>Games</topic><topic>Heteroclinic cycle</topic><topic>heteroclinic network</topic><topic>population dynamics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Sofia B. S. D.</creatorcontrib><creatorcontrib>Ferreira, Ana M. J.</creatorcontrib><creatorcontrib>Labouriau, Isabel S.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Sofia B. S. D.</au><au>Ferreira, Ana M. J.</au><au>Labouriau, Isabel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of cycles and survival in a jungle game with four species</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2024-07-02</date><risdate>2024</risdate><volume>39</volume><issue>3</issue><spage>389</spage><epage>407</epage><pages>389-407</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>The Jungle Game is used in population dynamics to describe cyclic competition among species that interact via a food chain. The dynamics of the Jungle Game supports a heteroclinic network whose cycles represent coexisting species. The stability of all heteroclinic cycles in the network for the Jungle Game with four species determines that only three species coexist in the long-run, interacting under cyclic dominance as a Rock-Paper-Scissors Game. This is in stark contrast with other interactions involving four species, such as cyclic interaction and intraguild predation. We use the Jungle Game with four species to determine the success of a fourth species invading a population of Rock-Paper-Scissors players.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/14689367.2024.2307515</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-9367 |
ispartof | Dynamical systems (London, England), 2024-07, Vol.39 (3), p.389-407 |
issn | 1468-9367 1468-9375 |
language | eng |
recordid | cdi_proquest_journals_3080017050 |
source | Taylor and Francis Science and Technology Collection |
subjects | asymptotic stability Cutting tools essential asymptotic stability Food chains Games Heteroclinic cycle heteroclinic network population dynamics Stability |
title | Stability of cycles and survival in a jungle game with four species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20cycles%20and%20survival%20in%20a%20jungle%20game%20with%20four%20species&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Castro,%20Sofia%20B.%20S.%20D.&rft.date=2024-07-02&rft.volume=39&rft.issue=3&rft.spage=389&rft.epage=407&rft.pages=389-407&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2024.2307515&rft_dat=%3Cproquest_infor%3E3080017050%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-e9f60487ba260b089684e0454e31896d697baf5fd1fe256c3fb0dc3d18b4b91a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080017050&rft_id=info:pmid/&rfr_iscdi=true |