Loading…

Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis

Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the l...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry 2024-08, Vol.42 (16), p.1877-1885
Main Authors: Wang, Jiaqi, Zhu, Zhijie, Feng, Kai, Liu, Shuang, Zhou, Yuxuan, Urooj, Ifra, He, Jiari, Wu, Zhiyi, Shen, Jiahui, Hu, Xu, Chen, Zhijie, Dong, Xudong, Sohail, Manzar, Ma, Yanyun, Chen, Jinxing, Li, Chaoran, An, Xingda, He, Le
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493
container_end_page 1885
container_issue 16
container_start_page 1877
container_title Chinese journal of chemistry
container_volume 42
creator Wang, Jiaqi
Zhu, Zhijie
Feng, Kai
Liu, Shuang
Zhou, Yuxuan
Urooj, Ifra
He, Jiari
Wu, Zhiyi
Shen, Jiahui
Hu, Xu
Chen, Zhijie
Dong, Xudong
Sohail, Manzar
Ma, Yanyun
Chen, Jinxing
Li, Chaoran
An, Xingda
He, Le
description Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion. The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.
doi_str_mv 10.1002/cjoc.202400177
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080287596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080287596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhosoeN26DrjueJJe0i6ljo4yoHgBdyWmJ0yGNBmTqnQn-AI-o09iZESXrk748v3nwJ8khxQmFIAdy6WTEwYsB6CcbyQ7tKR5yqEsNuM7wrSE_GE72Q1hGX3OWbmTvJ9YHdzg3UpLcm1E6J0lNxicFVYimVrxaDCQ25UYtDBmJI2z0TYGO3K9cIMbFuh7YYiwP0AusNcykqlSKIdAtCUzN5BGeK_Rf759nHr9gjaCQZgx6LCfbClhAh78zL3k_mx618zS-dX5RXMyTyXjjKeUF4pmVGEpWcc4ZBl0JWWZYgUoAR3wIs8ph0csKs6RFmWtJFbxr-6kyutsLzla71159_SMYWiX7tnbeLLNoAJW8aIuozVZW9K7EDyqduV1L_zYUmi_i26_i25_i46Beh141QbHf-y2ubxq_rJfoquEtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080287596</pqid></control><display><type>article</type><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</creator><creatorcontrib>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</creatorcontrib><description>Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion. The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202400177</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Anisotropy ; Catalysis ; Charge carrier injection ; Coating effects ; Effectiveness ; Energy harvesting ; Epitaxial growth ; Gold ; Heterogeneous catalysis ; Hydrogen evolution ; Metal nanoparticles ; Nanorods ; Photocatalysis ; Photochemicals ; Photochemistry ; Photoelectrochemistry ; Photothermal conversion ; Photothermal effect ; Plasmon resonance ; Plasmonics ; Resonance ; Silica ; Solar energy ; Solar energy conversion ; Surface plasmon resonance</subject><ispartof>Chinese journal of chemistry, 2024-08, Vol.42 (16), p.1877-1885</ispartof><rights>2024 SIOC, CAS, Shanghai, &amp; WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Zhu, Zhijie</creatorcontrib><creatorcontrib>Feng, Kai</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Urooj, Ifra</creatorcontrib><creatorcontrib>He, Jiari</creatorcontrib><creatorcontrib>Wu, Zhiyi</creatorcontrib><creatorcontrib>Shen, Jiahui</creatorcontrib><creatorcontrib>Hu, Xu</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Dong, Xudong</creatorcontrib><creatorcontrib>Sohail, Manzar</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Chen, Jinxing</creatorcontrib><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>An, Xingda</creatorcontrib><creatorcontrib>He, Le</creatorcontrib><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion. The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</description><subject>Anisotropy</subject><subject>Catalysis</subject><subject>Charge carrier injection</subject><subject>Coating effects</subject><subject>Effectiveness</subject><subject>Energy harvesting</subject><subject>Epitaxial growth</subject><subject>Gold</subject><subject>Heterogeneous catalysis</subject><subject>Hydrogen evolution</subject><subject>Metal nanoparticles</subject><subject>Nanorods</subject><subject>Photocatalysis</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photoelectrochemistry</subject><subject>Photothermal conversion</subject><subject>Photothermal effect</subject><subject>Plasmon resonance</subject><subject>Plasmonics</subject><subject>Resonance</subject><subject>Silica</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Surface plasmon resonance</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhosoeN26DrjueJJe0i6ljo4yoHgBdyWmJ0yGNBmTqnQn-AI-o09iZESXrk748v3nwJ8khxQmFIAdy6WTEwYsB6CcbyQ7tKR5yqEsNuM7wrSE_GE72Q1hGX3OWbmTvJ9YHdzg3UpLcm1E6J0lNxicFVYimVrxaDCQ25UYtDBmJI2z0TYGO3K9cIMbFuh7YYiwP0AusNcykqlSKIdAtCUzN5BGeK_Rf759nHr9gjaCQZgx6LCfbClhAh78zL3k_mx618zS-dX5RXMyTyXjjKeUF4pmVGEpWcc4ZBl0JWWZYgUoAR3wIs8ph0csKs6RFmWtJFbxr-6kyutsLzla71159_SMYWiX7tnbeLLNoAJW8aIuozVZW9K7EDyqduV1L_zYUmi_i26_i25_i46Beh141QbHf-y2ubxq_rJfoquEtQ</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Wang, Jiaqi</creator><creator>Zhu, Zhijie</creator><creator>Feng, Kai</creator><creator>Liu, Shuang</creator><creator>Zhou, Yuxuan</creator><creator>Urooj, Ifra</creator><creator>He, Jiari</creator><creator>Wu, Zhiyi</creator><creator>Shen, Jiahui</creator><creator>Hu, Xu</creator><creator>Chen, Zhijie</creator><creator>Dong, Xudong</creator><creator>Sohail, Manzar</creator><creator>Ma, Yanyun</creator><creator>Chen, Jinxing</creator><creator>Li, Chaoran</creator><creator>An, Xingda</creator><creator>He, Le</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240815</creationdate><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><author>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Catalysis</topic><topic>Charge carrier injection</topic><topic>Coating effects</topic><topic>Effectiveness</topic><topic>Energy harvesting</topic><topic>Epitaxial growth</topic><topic>Gold</topic><topic>Heterogeneous catalysis</topic><topic>Hydrogen evolution</topic><topic>Metal nanoparticles</topic><topic>Nanorods</topic><topic>Photocatalysis</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photoelectrochemistry</topic><topic>Photothermal conversion</topic><topic>Photothermal effect</topic><topic>Plasmon resonance</topic><topic>Plasmonics</topic><topic>Resonance</topic><topic>Silica</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Zhu, Zhijie</creatorcontrib><creatorcontrib>Feng, Kai</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Urooj, Ifra</creatorcontrib><creatorcontrib>He, Jiari</creatorcontrib><creatorcontrib>Wu, Zhiyi</creatorcontrib><creatorcontrib>Shen, Jiahui</creatorcontrib><creatorcontrib>Hu, Xu</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Dong, Xudong</creatorcontrib><creatorcontrib>Sohail, Manzar</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Chen, Jinxing</creatorcontrib><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>An, Xingda</creatorcontrib><creatorcontrib>He, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiaqi</au><au>Zhu, Zhijie</au><au>Feng, Kai</au><au>Liu, Shuang</au><au>Zhou, Yuxuan</au><au>Urooj, Ifra</au><au>He, Jiari</au><au>Wu, Zhiyi</au><au>Shen, Jiahui</au><au>Hu, Xu</au><au>Chen, Zhijie</au><au>Dong, Xudong</au><au>Sohail, Manzar</au><au>Ma, Yanyun</au><au>Chen, Jinxing</au><au>Li, Chaoran</au><au>An, Xingda</au><au>He, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2024-08-15</date><risdate>2024</risdate><volume>42</volume><issue>16</issue><spage>1877</spage><epage>1885</epage><pages>1877-1885</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion. The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/cjoc.202400177</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-604X
ispartof Chinese journal of chemistry, 2024-08, Vol.42 (16), p.1877-1885
issn 1001-604X
1614-7065
language eng
recordid cdi_proquest_journals_3080287596
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Catalysis
Charge carrier injection
Coating effects
Effectiveness
Energy harvesting
Epitaxial growth
Gold
Heterogeneous catalysis
Hydrogen evolution
Metal nanoparticles
Nanorods
Photocatalysis
Photochemicals
Photochemistry
Photoelectrochemistry
Photothermal conversion
Photothermal effect
Plasmon resonance
Plasmonics
Resonance
Silica
Solar energy
Solar energy conversion
Surface plasmon resonance
title Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Plasmon%20Resonance%20Enables%20Spatially%20Controlled%20Photothermal%20and%20Photochemical%20Effects%20in%20Hot%20Carrier%E2%80%90Driven%20Catalysis&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Wang,%20Jiaqi&rft.date=2024-08-15&rft.volume=42&rft.issue=16&rft.spage=1877&rft.epage=1885&rft.pages=1877-1885&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202400177&rft_dat=%3Cproquest_cross%3E3080287596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080287596&rft_id=info:pmid/&rfr_iscdi=true