Loading…
Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis
Comprehensive Summary Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the l...
Saved in:
Published in: | Chinese journal of chemistry 2024-08, Vol.42 (16), p.1877-1885 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493 |
container_end_page | 1885 |
container_issue | 16 |
container_start_page | 1877 |
container_title | Chinese journal of chemistry |
container_volume | 42 |
creator | Wang, Jiaqi Zhu, Zhijie Feng, Kai Liu, Shuang Zhou, Yuxuan Urooj, Ifra He, Jiari Wu, Zhiyi Shen, Jiahui Hu, Xu Chen, Zhijie Dong, Xudong Sohail, Manzar Ma, Yanyun Chen, Jinxing Li, Chaoran An, Xingda He, Le |
description | Comprehensive Summary
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.
The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite. |
doi_str_mv | 10.1002/cjoc.202400177 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080287596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080287596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhosoeN26DrjueJJe0i6ljo4yoHgBdyWmJ0yGNBmTqnQn-AI-o09iZESXrk748v3nwJ8khxQmFIAdy6WTEwYsB6CcbyQ7tKR5yqEsNuM7wrSE_GE72Q1hGX3OWbmTvJ9YHdzg3UpLcm1E6J0lNxicFVYimVrxaDCQ25UYtDBmJI2z0TYGO3K9cIMbFuh7YYiwP0AusNcykqlSKIdAtCUzN5BGeK_Rf759nHr9gjaCQZgx6LCfbClhAh78zL3k_mx618zS-dX5RXMyTyXjjKeUF4pmVGEpWcc4ZBl0JWWZYgUoAR3wIs8ph0csKs6RFmWtJFbxr-6kyutsLzla71159_SMYWiX7tnbeLLNoAJW8aIuozVZW9K7EDyqduV1L_zYUmi_i26_i25_i46Beh141QbHf-y2ubxq_rJfoquEtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080287596</pqid></control><display><type>article</type><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</creator><creatorcontrib>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</creatorcontrib><description>Comprehensive Summary
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.
The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202400177</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Anisotropy ; Catalysis ; Charge carrier injection ; Coating effects ; Effectiveness ; Energy harvesting ; Epitaxial growth ; Gold ; Heterogeneous catalysis ; Hydrogen evolution ; Metal nanoparticles ; Nanorods ; Photocatalysis ; Photochemicals ; Photochemistry ; Photoelectrochemistry ; Photothermal conversion ; Photothermal effect ; Plasmon resonance ; Plasmonics ; Resonance ; Silica ; Solar energy ; Solar energy conversion ; Surface plasmon resonance</subject><ispartof>Chinese journal of chemistry, 2024-08, Vol.42 (16), p.1877-1885</ispartof><rights>2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Zhu, Zhijie</creatorcontrib><creatorcontrib>Feng, Kai</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Urooj, Ifra</creatorcontrib><creatorcontrib>He, Jiari</creatorcontrib><creatorcontrib>Wu, Zhiyi</creatorcontrib><creatorcontrib>Shen, Jiahui</creatorcontrib><creatorcontrib>Hu, Xu</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Dong, Xudong</creatorcontrib><creatorcontrib>Sohail, Manzar</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Chen, Jinxing</creatorcontrib><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>An, Xingda</creatorcontrib><creatorcontrib>He, Le</creatorcontrib><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.
The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</description><subject>Anisotropy</subject><subject>Catalysis</subject><subject>Charge carrier injection</subject><subject>Coating effects</subject><subject>Effectiveness</subject><subject>Energy harvesting</subject><subject>Epitaxial growth</subject><subject>Gold</subject><subject>Heterogeneous catalysis</subject><subject>Hydrogen evolution</subject><subject>Metal nanoparticles</subject><subject>Nanorods</subject><subject>Photocatalysis</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photoelectrochemistry</subject><subject>Photothermal conversion</subject><subject>Photothermal effect</subject><subject>Plasmon resonance</subject><subject>Plasmonics</subject><subject>Resonance</subject><subject>Silica</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Surface plasmon resonance</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhosoeN26DrjueJJe0i6ljo4yoHgBdyWmJ0yGNBmTqnQn-AI-o09iZESXrk748v3nwJ8khxQmFIAdy6WTEwYsB6CcbyQ7tKR5yqEsNuM7wrSE_GE72Q1hGX3OWbmTvJ9YHdzg3UpLcm1E6J0lNxicFVYimVrxaDCQ25UYtDBmJI2z0TYGO3K9cIMbFuh7YYiwP0AusNcykqlSKIdAtCUzN5BGeK_Rf759nHr9gjaCQZgx6LCfbClhAh78zL3k_mx618zS-dX5RXMyTyXjjKeUF4pmVGEpWcc4ZBl0JWWZYgUoAR3wIs8ph0csKs6RFmWtJFbxr-6kyutsLzla71159_SMYWiX7tnbeLLNoAJW8aIuozVZW9K7EDyqduV1L_zYUmi_i26_i25_i46Beh141QbHf-y2ubxq_rJfoquEtQ</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Wang, Jiaqi</creator><creator>Zhu, Zhijie</creator><creator>Feng, Kai</creator><creator>Liu, Shuang</creator><creator>Zhou, Yuxuan</creator><creator>Urooj, Ifra</creator><creator>He, Jiari</creator><creator>Wu, Zhiyi</creator><creator>Shen, Jiahui</creator><creator>Hu, Xu</creator><creator>Chen, Zhijie</creator><creator>Dong, Xudong</creator><creator>Sohail, Manzar</creator><creator>Ma, Yanyun</creator><creator>Chen, Jinxing</creator><creator>Li, Chaoran</creator><creator>An, Xingda</creator><creator>He, Le</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240815</creationdate><title>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</title><author>Wang, Jiaqi ; Zhu, Zhijie ; Feng, Kai ; Liu, Shuang ; Zhou, Yuxuan ; Urooj, Ifra ; He, Jiari ; Wu, Zhiyi ; Shen, Jiahui ; Hu, Xu ; Chen, Zhijie ; Dong, Xudong ; Sohail, Manzar ; Ma, Yanyun ; Chen, Jinxing ; Li, Chaoran ; An, Xingda ; He, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Catalysis</topic><topic>Charge carrier injection</topic><topic>Coating effects</topic><topic>Effectiveness</topic><topic>Energy harvesting</topic><topic>Epitaxial growth</topic><topic>Gold</topic><topic>Heterogeneous catalysis</topic><topic>Hydrogen evolution</topic><topic>Metal nanoparticles</topic><topic>Nanorods</topic><topic>Photocatalysis</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photoelectrochemistry</topic><topic>Photothermal conversion</topic><topic>Photothermal effect</topic><topic>Plasmon resonance</topic><topic>Plasmonics</topic><topic>Resonance</topic><topic>Silica</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Zhu, Zhijie</creatorcontrib><creatorcontrib>Feng, Kai</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Urooj, Ifra</creatorcontrib><creatorcontrib>He, Jiari</creatorcontrib><creatorcontrib>Wu, Zhiyi</creatorcontrib><creatorcontrib>Shen, Jiahui</creatorcontrib><creatorcontrib>Hu, Xu</creatorcontrib><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Dong, Xudong</creatorcontrib><creatorcontrib>Sohail, Manzar</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Chen, Jinxing</creatorcontrib><creatorcontrib>Li, Chaoran</creatorcontrib><creatorcontrib>An, Xingda</creatorcontrib><creatorcontrib>He, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiaqi</au><au>Zhu, Zhijie</au><au>Feng, Kai</au><au>Liu, Shuang</au><au>Zhou, Yuxuan</au><au>Urooj, Ifra</au><au>He, Jiari</au><au>Wu, Zhiyi</au><au>Shen, Jiahui</au><au>Hu, Xu</au><au>Chen, Zhijie</au><au>Dong, Xudong</au><au>Sohail, Manzar</au><au>Ma, Yanyun</au><au>Chen, Jinxing</au><au>Li, Chaoran</au><au>An, Xingda</au><au>He, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2024-08-15</date><risdate>2024</risdate><volume>42</volume><issue>16</issue><spage>1877</spage><epage>1885</epage><pages>1877-1885</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary
Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.
The anisotropic plasmon resonance nature of Au nanorods is utilized to simultaneously achieve photothermal and photochemical functionalities towards synergistic photocatalysis in an Au@SiO2‐Pd nanocomposite.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/cjoc.202400177</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-604X |
ispartof | Chinese journal of chemistry, 2024-08, Vol.42 (16), p.1877-1885 |
issn | 1001-604X 1614-7065 |
language | eng |
recordid | cdi_proquest_journals_3080287596 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anisotropy Catalysis Charge carrier injection Coating effects Effectiveness Energy harvesting Epitaxial growth Gold Heterogeneous catalysis Hydrogen evolution Metal nanoparticles Nanorods Photocatalysis Photochemicals Photochemistry Photoelectrochemistry Photothermal conversion Photothermal effect Plasmon resonance Plasmonics Resonance Silica Solar energy Solar energy conversion Surface plasmon resonance |
title | Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Plasmon%20Resonance%20Enables%20Spatially%20Controlled%20Photothermal%20and%20Photochemical%20Effects%20in%20Hot%20Carrier%E2%80%90Driven%20Catalysis&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Wang,%20Jiaqi&rft.date=2024-08-15&rft.volume=42&rft.issue=16&rft.spage=1877&rft.epage=1885&rft.pages=1877-1885&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202400177&rft_dat=%3Cproquest_cross%3E3080287596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2727-175f131fe6c2d270330d6123f250fa0d07544170be5877e1569fce80fa9dcf493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080287596&rft_id=info:pmid/&rfr_iscdi=true |