Loading…
Metric Learning for Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equiv...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ali, Riccardo Kulytė, Paulina Haitz Sáez de Ocáriz Borde Liò, Pietro |
description | Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081471375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081471375</sourcerecordid><originalsourceid>FETCH-proquest_journals_30814713753</originalsourceid><addsrcrecordid>eNqNyjEOwiAYQGFiYmKjvQOJcxMKRTq5NFUHdXJviIKhEmh_QK8vgwdw-ob3FqigjNVV21C6QmUIIyGE7gTlnBVof1ERzB2flQRn3BNrD7izRmcf-Ag-Tbifk3lLMNJFfFUJpM3Ej4dX2KClljao8ucabQ_9rTtVE_g5qRCH0SdwOQ2MtHUjaiY4--_6ArFuOE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081471375</pqid></control><display><type>article</type><title>Metric Learning for Clifford Group Equivariant Neural Networks</title><source>Publicly Available Content Database</source><creator>Ali, Riccardo ; Kulytė, Paulina ; Haitz Sáez de Ocáriz Borde ; Liò, Pietro</creator><creatorcontrib>Ali, Riccardo ; Kulytė, Paulina ; Haitz Sáez de Ocáriz Borde ; Liò, Pietro</creatorcontrib><description>Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Group theory ; Learning ; Neural networks ; Representations ; Symmetry</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3081471375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Ali, Riccardo</creatorcontrib><creatorcontrib>Kulytė, Paulina</creatorcontrib><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Liò, Pietro</creatorcontrib><title>Metric Learning for Clifford Group Equivariant Neural Networks</title><title>arXiv.org</title><description>Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs</description><subject>Eigenvalues</subject><subject>Group theory</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjEOwiAYQGFiYmKjvQOJcxMKRTq5NFUHdXJviIKhEmh_QK8vgwdw-ob3FqigjNVV21C6QmUIIyGE7gTlnBVof1ERzB2flQRn3BNrD7izRmcf-Ag-Tbifk3lLMNJFfFUJpM3Ej4dX2KClljao8ucabQ_9rTtVE_g5qRCH0SdwOQ2MtHUjaiY4--_6ArFuOE8</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Ali, Riccardo</creator><creator>Kulytė, Paulina</creator><creator>Haitz Sáez de Ocáriz Borde</creator><creator>Liò, Pietro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240713</creationdate><title>Metric Learning for Clifford Group Equivariant Neural Networks</title><author>Ali, Riccardo ; Kulytė, Paulina ; Haitz Sáez de Ocáriz Borde ; Liò, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30814713753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvalues</topic><topic>Group theory</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Ali, Riccardo</creatorcontrib><creatorcontrib>Kulytė, Paulina</creatorcontrib><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Liò, Pietro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Riccardo</au><au>Kulytė, Paulina</au><au>Haitz Sáez de Ocáriz Borde</au><au>Liò, Pietro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Metric Learning for Clifford Group Equivariant Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-07-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081471375 |
source | Publicly Available Content Database |
subjects | Eigenvalues Group theory Learning Neural networks Representations Symmetry |
title | Metric Learning for Clifford Group Equivariant Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Metric%20Learning%20for%20Clifford%20Group%20Equivariant%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Ali,%20Riccardo&rft.date=2024-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081471375%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30814713753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081471375&rft_id=info:pmid/&rfr_iscdi=true |