Loading…
Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process
Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting ir...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.95576-95598 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03 |
container_end_page | 95598 |
container_issue | |
container_start_page | 95576 |
container_title | IEEE access |
container_volume | 12 |
creator | Tayalati, Faouzi Boukrouh, Ikhlass Bouhsaien, Loubna Azmani, Abdellah Azmani, Monir |
description | Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes. |
doi_str_mv | 10.1109/ACCESS.2024.3425582 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3081864965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589648</ieee_id><doaj_id>oai_doaj_org_article_1b3c640fb73742458f52a15b843467ab</doaj_id><sourcerecordid>3081864965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</originalsourceid><addsrcrecordid>eNpNUd2OEyEUnhhN3Kz7BHpB4vVUhr9hvJuMq9ukG02q8ZIAc2hpZocK9KLPsi8rdRqzcAEcvh84X1W9b_CqaXD3qR-G--12RTBhK8oI55K8qm5II7qacipev9i_re5SOuAyZCnx9qZ6fjib6EfUH48xaLtH6znDLurs5x36AnBEG9BxLqe6P-UAsw0jRPTb5z3a5gJL2Vs9oR8xWEgJDWHOMUxo2OuYkQsR9XN40tO5iGWw2Yf5Mxp0gsI-jWfk5-J4WC7QY5jGi-9V7F31xukpwd11va1-fb3_OTzUm-_f1kO_qS2RXa71SKzBggjhHMMtIVJIphtCDDHc6Y640WFOtCuTArNCjEK3xjAN2nWA6W21XnTHoA_qGP2TjmcVtFf_CiHuVPmMtxOoxlArGHampS0jjEtXhBtuJKNMtNoUrY-LVmnnnxOkrA7hFOfyfEVL06VgneAFRReUjSGlCO6_a4PVJVS1hKouoaprqIX1YWF5AHjB4LITTNK_5FOgHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081864965</pqid></control><display><type>article</type><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><source>IEEE Open Access Journals</source><creator>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</creator><creatorcontrib>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</creatorcontrib><description>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3425582</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Autoencoders ; Control charts ; Control limits ; Costs ; Cushions ; Fasteners ; Injection molding ; Injection molding process ; Long short term memory ; LSTM-auto encoder ; melt cushion parameter ; Process control ; Quality assessment ; Sequences ; Statistical analysis ; Statistical methods ; Statistical process control</subject><ispartof>IEEE access, 2024, Vol.12, p.95576-95598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</cites><orcidid>0009-0009-6745-9207 ; 0009-0003-7216-6667 ; 0000-0002-8280-0786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589648$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tayalati, Faouzi</creatorcontrib><creatorcontrib>Boukrouh, Ikhlass</creatorcontrib><creatorcontrib>Bouhsaien, Loubna</creatorcontrib><creatorcontrib>Azmani, Abdellah</creatorcontrib><creatorcontrib>Azmani, Monir</creatorcontrib><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Autoencoders</subject><subject>Control charts</subject><subject>Control limits</subject><subject>Costs</subject><subject>Cushions</subject><subject>Fasteners</subject><subject>Injection molding</subject><subject>Injection molding process</subject><subject>Long short term memory</subject><subject>LSTM-auto encoder</subject><subject>melt cushion parameter</subject><subject>Process control</subject><subject>Quality assessment</subject><subject>Sequences</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical process control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd2OEyEUnhhN3Kz7BHpB4vVUhr9hvJuMq9ukG02q8ZIAc2hpZocK9KLPsi8rdRqzcAEcvh84X1W9b_CqaXD3qR-G--12RTBhK8oI55K8qm5II7qacipev9i_re5SOuAyZCnx9qZ6fjib6EfUH48xaLtH6znDLurs5x36AnBEG9BxLqe6P-UAsw0jRPTb5z3a5gJL2Vs9oR8xWEgJDWHOMUxo2OuYkQsR9XN40tO5iGWw2Yf5Mxp0gsI-jWfk5-J4WC7QY5jGi-9V7F31xukpwd11va1-fb3_OTzUm-_f1kO_qS2RXa71SKzBggjhHMMtIVJIphtCDDHc6Y640WFOtCuTArNCjEK3xjAN2nWA6W21XnTHoA_qGP2TjmcVtFf_CiHuVPmMtxOoxlArGHampS0jjEtXhBtuJKNMtNoUrY-LVmnnnxOkrA7hFOfyfEVL06VgneAFRReUjSGlCO6_a4PVJVS1hKouoaprqIX1YWF5AHjB4LITTNK_5FOgHw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tayalati, Faouzi</creator><creator>Boukrouh, Ikhlass</creator><creator>Bouhsaien, Loubna</creator><creator>Azmani, Abdellah</creator><creator>Azmani, Monir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-6745-9207</orcidid><orcidid>https://orcid.org/0009-0003-7216-6667</orcidid><orcidid>https://orcid.org/0000-0002-8280-0786</orcidid></search><sort><creationdate>2024</creationdate><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><author>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Autoencoders</topic><topic>Control charts</topic><topic>Control limits</topic><topic>Costs</topic><topic>Cushions</topic><topic>Fasteners</topic><topic>Injection molding</topic><topic>Injection molding process</topic><topic>Long short term memory</topic><topic>LSTM-auto encoder</topic><topic>melt cushion parameter</topic><topic>Process control</topic><topic>Quality assessment</topic><topic>Sequences</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayalati, Faouzi</creatorcontrib><creatorcontrib>Boukrouh, Ikhlass</creatorcontrib><creatorcontrib>Bouhsaien, Loubna</creatorcontrib><creatorcontrib>Azmani, Abdellah</creatorcontrib><creatorcontrib>Azmani, Monir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayalati, Faouzi</au><au>Boukrouh, Ikhlass</au><au>Bouhsaien, Loubna</au><au>Azmani, Abdellah</au><au>Azmani, Monir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>95576</spage><epage>95598</epage><pages>95576-95598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3425582</doi><tpages>23</tpages><orcidid>https://orcid.org/0009-0009-6745-9207</orcidid><orcidid>https://orcid.org/0009-0003-7216-6667</orcidid><orcidid>https://orcid.org/0000-0002-8280-0786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.95576-95598 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3081864965 |
source | IEEE Open Access Journals |
subjects | Anomalies Anomaly detection Autoencoders Control charts Control limits Costs Cushions Fasteners Injection molding Injection molding process Long short term memory LSTM-auto encoder melt cushion parameter Process control Quality assessment Sequences Statistical analysis Statistical methods Statistical process control |
title | Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approach%20Integrating%20Deep%20Learning-Autoencoder%20With%20Statistical%20Process%20Control%20Chart%20for%20Anomaly%20Detection:%20Case%20Study%20in%20Injection%20Molding%20Process&rft.jtitle=IEEE%20access&rft.au=Tayalati,%20Faouzi&rft.date=2024&rft.volume=12&rft.spage=95576&rft.epage=95598&rft.pages=95576-95598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3425582&rft_dat=%3Cproquest_ieee_%3E3081864965%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081864965&rft_id=info:pmid/&rft_ieee_id=10589648&rfr_iscdi=true |