Loading…

Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process

Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting ir...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.95576-95598
Main Authors: Tayalati, Faouzi, Boukrouh, Ikhlass, Bouhsaien, Loubna, Azmani, Abdellah, Azmani, Monir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03
container_end_page 95598
container_issue
container_start_page 95576
container_title IEEE access
container_volume 12
creator Tayalati, Faouzi
Boukrouh, Ikhlass
Bouhsaien, Loubna
Azmani, Abdellah
Azmani, Monir
description Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.
doi_str_mv 10.1109/ACCESS.2024.3425582
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3081864965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10589648</ieee_id><doaj_id>oai_doaj_org_article_1b3c640fb73742458f52a15b843467ab</doaj_id><sourcerecordid>3081864965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</originalsourceid><addsrcrecordid>eNpNUd2OEyEUnhhN3Kz7BHpB4vVUhr9hvJuMq9ukG02q8ZIAc2hpZocK9KLPsi8rdRqzcAEcvh84X1W9b_CqaXD3qR-G--12RTBhK8oI55K8qm5II7qacipev9i_re5SOuAyZCnx9qZ6fjib6EfUH48xaLtH6znDLurs5x36AnBEG9BxLqe6P-UAsw0jRPTb5z3a5gJL2Vs9oR8xWEgJDWHOMUxo2OuYkQsR9XN40tO5iGWw2Yf5Mxp0gsI-jWfk5-J4WC7QY5jGi-9V7F31xukpwd11va1-fb3_OTzUm-_f1kO_qS2RXa71SKzBggjhHMMtIVJIphtCDDHc6Y640WFOtCuTArNCjEK3xjAN2nWA6W21XnTHoA_qGP2TjmcVtFf_CiHuVPmMtxOoxlArGHampS0jjEtXhBtuJKNMtNoUrY-LVmnnnxOkrA7hFOfyfEVL06VgneAFRReUjSGlCO6_a4PVJVS1hKouoaprqIX1YWF5AHjB4LITTNK_5FOgHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081864965</pqid></control><display><type>article</type><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><source>IEEE Open Access Journals</source><creator>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</creator><creatorcontrib>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</creatorcontrib><description>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3425582</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Autoencoders ; Control charts ; Control limits ; Costs ; Cushions ; Fasteners ; Injection molding ; Injection molding process ; Long short term memory ; LSTM-auto encoder ; melt cushion parameter ; Process control ; Quality assessment ; Sequences ; Statistical analysis ; Statistical methods ; Statistical process control</subject><ispartof>IEEE access, 2024, Vol.12, p.95576-95598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</cites><orcidid>0009-0009-6745-9207 ; 0009-0003-7216-6667 ; 0000-0002-8280-0786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10589648$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tayalati, Faouzi</creatorcontrib><creatorcontrib>Boukrouh, Ikhlass</creatorcontrib><creatorcontrib>Bouhsaien, Loubna</creatorcontrib><creatorcontrib>Azmani, Abdellah</creatorcontrib><creatorcontrib>Azmani, Monir</creatorcontrib><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><title>IEEE access</title><addtitle>Access</addtitle><description>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Autoencoders</subject><subject>Control charts</subject><subject>Control limits</subject><subject>Costs</subject><subject>Cushions</subject><subject>Fasteners</subject><subject>Injection molding</subject><subject>Injection molding process</subject><subject>Long short term memory</subject><subject>LSTM-auto encoder</subject><subject>melt cushion parameter</subject><subject>Process control</subject><subject>Quality assessment</subject><subject>Sequences</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical process control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd2OEyEUnhhN3Kz7BHpB4vVUhr9hvJuMq9ukG02q8ZIAc2hpZocK9KLPsi8rdRqzcAEcvh84X1W9b_CqaXD3qR-G--12RTBhK8oI55K8qm5II7qacipev9i_re5SOuAyZCnx9qZ6fjib6EfUH48xaLtH6znDLurs5x36AnBEG9BxLqe6P-UAsw0jRPTb5z3a5gJL2Vs9oR8xWEgJDWHOMUxo2OuYkQsR9XN40tO5iGWw2Yf5Mxp0gsI-jWfk5-J4WC7QY5jGi-9V7F31xukpwd11va1-fb3_OTzUm-_f1kO_qS2RXa71SKzBggjhHMMtIVJIphtCDDHc6Y640WFOtCuTArNCjEK3xjAN2nWA6W21XnTHoA_qGP2TjmcVtFf_CiHuVPmMtxOoxlArGHampS0jjEtXhBtuJKNMtNoUrY-LVmnnnxOkrA7hFOfyfEVL06VgneAFRReUjSGlCO6_a4PVJVS1hKouoaprqIX1YWF5AHjB4LITTNK_5FOgHw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tayalati, Faouzi</creator><creator>Boukrouh, Ikhlass</creator><creator>Bouhsaien, Loubna</creator><creator>Azmani, Abdellah</creator><creator>Azmani, Monir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-6745-9207</orcidid><orcidid>https://orcid.org/0009-0003-7216-6667</orcidid><orcidid>https://orcid.org/0000-0002-8280-0786</orcidid></search><sort><creationdate>2024</creationdate><title>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</title><author>Tayalati, Faouzi ; Boukrouh, Ikhlass ; Bouhsaien, Loubna ; Azmani, Abdellah ; Azmani, Monir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Autoencoders</topic><topic>Control charts</topic><topic>Control limits</topic><topic>Costs</topic><topic>Cushions</topic><topic>Fasteners</topic><topic>Injection molding</topic><topic>Injection molding process</topic><topic>Long short term memory</topic><topic>LSTM-auto encoder</topic><topic>melt cushion parameter</topic><topic>Process control</topic><topic>Quality assessment</topic><topic>Sequences</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayalati, Faouzi</creatorcontrib><creatorcontrib>Boukrouh, Ikhlass</creatorcontrib><creatorcontrib>Bouhsaien, Loubna</creatorcontrib><creatorcontrib>Azmani, Abdellah</creatorcontrib><creatorcontrib>Azmani, Monir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayalati, Faouzi</au><au>Boukrouh, Ikhlass</au><au>Bouhsaien, Loubna</au><au>Azmani, Abdellah</au><au>Azmani, Monir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>95576</spage><epage>95598</epage><pages>95576-95598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Detecting anomalies in the injection molding process remains a challenging task, demanding significant resources, data, and expertise due to their impact on cost and time reduction. While traditional methods like statistical process control (SPC) using control charts are widely used for detecting irregularities, they can catch predefined patterns such as systematic, upward shift, downward shift, cyclic, and mixture patterns. However, they still have limitations in identifying anomalies beyond theses common patterns. Numerous unnatural patterns may exist in process data, indicating that the process is out of control. In our study, we propose an innovative strategy to enhance anomaly detection by integrating Statistical Process Control (SPC) with a Long Short-Term Memory (LSTM) based Autoencoder (AE). The main objective is to detect variations in the Melt cushion parameter, a crucial aspect of the injection molding process. The LSTM-AE model determines optimal threshold levels based on reconstruction loss rates across all time-series sequences, complementing traditional control charts' upper and lower limits. With a model achieving a coefficient of determination (R-squared) of 0.993 and a Mean Absolute Error of 0.0146 through training, and incorporating multiple process limits-Upper Limit Control (ULC), Lower Limit Control (LLC), Maximum Threshold, and Minimum Threshold-the enhanced control chart exhibits significant advancements in anomaly detection. In four distinct scenarios, the integrated model demonstrates its capability to detect anomalies in the Melt cushion that exceed predefined limits, as well as anomalies showing ascending and descending trends. This ultimately enhances the robustness and efficiency of anomaly detection in injection molding processes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3425582</doi><tpages>23</tpages><orcidid>https://orcid.org/0009-0009-6745-9207</orcidid><orcidid>https://orcid.org/0009-0003-7216-6667</orcidid><orcidid>https://orcid.org/0000-0002-8280-0786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.95576-95598
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3081864965
source IEEE Open Access Journals
subjects Anomalies
Anomaly detection
Autoencoders
Control charts
Control limits
Costs
Cushions
Fasteners
Injection molding
Injection molding process
Long short term memory
LSTM-auto encoder
melt cushion parameter
Process control
Quality assessment
Sequences
Statistical analysis
Statistical methods
Statistical process control
title Hybrid Approach Integrating Deep Learning-Autoencoder With Statistical Process Control Chart for Anomaly Detection: Case Study in Injection Molding Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approach%20Integrating%20Deep%20Learning-Autoencoder%20With%20Statistical%20Process%20Control%20Chart%20for%20Anomaly%20Detection:%20Case%20Study%20in%20Injection%20Molding%20Process&rft.jtitle=IEEE%20access&rft.au=Tayalati,%20Faouzi&rft.date=2024&rft.volume=12&rft.spage=95576&rft.epage=95598&rft.pages=95576-95598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3425582&rft_dat=%3Cproquest_ieee_%3E3081864965%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ad2cb06266ff407228684a122b2b5fa92fdf052afafa3e4c66d6a7bb4aeaf9e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081864965&rft_id=info:pmid/&rft_ieee_id=10589648&rfr_iscdi=true