Loading…
AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems
For an educational purpose we develop the Python package AutoFreeFem which generates all ingredients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the expressions for use in LaTex. As an input, the objective function and the weak form of the problem have to be sp...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Allaire, Grégoire Gfrerer, Michael H |
description | For an educational purpose we develop the Python package AutoFreeFem which generates all ingredients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the expressions for use in LaTex. As an input, the objective function and the weak form of the problem have to be specified only once. This ensures consistency between the simulation code and its documentation. In particular, AutoFreeFem provides the linearization of the state equation, the adjoint problem, the shape derivative, as well as a basic implementation of the level-set based mesh evolution method for shape optimization. For the computation of shape derivatives we utilize the mathematical Lagrangian approach for differentiating PDE-constrained shape functions. Differentiation is done symbolically using Sympy. In numerical experiments we verify the accuracy of the computed derivatives. Finally, we showcase the capabilities of AutoFreeFem by considering shape optimization of a non-linear diffusion problem, linear and non-linear elasticity problems, a thermo-elasticity problem and a fluid-structure interaction problem. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081976945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081976945</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819769453</originalsourceid><addsrcrecordid>eNqNjM1qAjEURoNQUFrf4YJLGRgTx79dKQ5dtDv3Esc7TiTJjckNrX2JvnKntg_g6uNwDt9AjKRSs2I1l3Ioximdy7KUi6WsKjUS38-ZqY6INboN_ILTbBpo6IhwQo-xR_LwYbiDW7d9n05B-yO86R1-AmUOmaGlCKnTAW-KKZCl0xUosHHm6--DWvDkC2s86gguWzZF6K7JNAlCpINFl57EQ6ttwvH_PopJvd29vBZ9cMmYeH-mHH2v9qpczdbLxXpeqfuqHyghVls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081976945</pqid></control><display><type>article</type><title>AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems</title><source>Publicly Available Content Database</source><creator>Allaire, Grégoire ; Gfrerer, Michael H</creator><creatorcontrib>Allaire, Grégoire ; Gfrerer, Michael H</creatorcontrib><description>For an educational purpose we develop the Python package AutoFreeFem which generates all ingredients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the expressions for use in LaTex. As an input, the objective function and the weak form of the problem have to be specified only once. This ensures consistency between the simulation code and its documentation. In particular, AutoFreeFem provides the linearization of the state equation, the adjoint problem, the shape derivative, as well as a basic implementation of the level-set based mesh evolution method for shape optimization. For the computation of shape derivatives we utilize the mathematical Lagrangian approach for differentiating PDE-constrained shape functions. Differentiation is done symbolically using Sympy. In numerical experiments we verify the accuracy of the computed derivatives. Finally, we showcase the capabilities of AutoFreeFem by considering shape optimization of a non-linear diffusion problem, linear and non-linear elasticity problems, a thermo-elasticity problem and a fluid-structure interaction problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Derivatives ; Elasticity ; Equations of state ; Fluid-structure interaction ; Latex ; Optimization ; Shape functions ; Shape optimization ; Topology optimization</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3081976945?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Allaire, Grégoire</creatorcontrib><creatorcontrib>Gfrerer, Michael H</creatorcontrib><title>AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems</title><title>arXiv.org</title><description>For an educational purpose we develop the Python package AutoFreeFem which generates all ingredients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the expressions for use in LaTex. As an input, the objective function and the weak form of the problem have to be specified only once. This ensures consistency between the simulation code and its documentation. In particular, AutoFreeFem provides the linearization of the state equation, the adjoint problem, the shape derivative, as well as a basic implementation of the level-set based mesh evolution method for shape optimization. For the computation of shape derivatives we utilize the mathematical Lagrangian approach for differentiating PDE-constrained shape functions. Differentiation is done symbolically using Sympy. In numerical experiments we verify the accuracy of the computed derivatives. Finally, we showcase the capabilities of AutoFreeFem by considering shape optimization of a non-linear diffusion problem, linear and non-linear elasticity problems, a thermo-elasticity problem and a fluid-structure interaction problem.</description><subject>Derivatives</subject><subject>Elasticity</subject><subject>Equations of state</subject><subject>Fluid-structure interaction</subject><subject>Latex</subject><subject>Optimization</subject><subject>Shape functions</subject><subject>Shape optimization</subject><subject>Topology optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM1qAjEURoNQUFrf4YJLGRgTx79dKQ5dtDv3Esc7TiTJjckNrX2JvnKntg_g6uNwDt9AjKRSs2I1l3Ioximdy7KUi6WsKjUS38-ZqY6INboN_ILTbBpo6IhwQo-xR_LwYbiDW7d9n05B-yO86R1-AmUOmaGlCKnTAW-KKZCl0xUosHHm6--DWvDkC2s86gguWzZF6K7JNAlCpINFl57EQ6ttwvH_PopJvd29vBZ9cMmYeH-mHH2v9qpczdbLxXpeqfuqHyghVls</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Allaire, Grégoire</creator><creator>Gfrerer, Michael H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240716</creationdate><title>AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems</title><author>Allaire, Grégoire ; Gfrerer, Michael H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819769453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Derivatives</topic><topic>Elasticity</topic><topic>Equations of state</topic><topic>Fluid-structure interaction</topic><topic>Latex</topic><topic>Optimization</topic><topic>Shape functions</topic><topic>Shape optimization</topic><topic>Topology optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Allaire, Grégoire</creatorcontrib><creatorcontrib>Gfrerer, Michael H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allaire, Grégoire</au><au>Gfrerer, Michael H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems</atitle><jtitle>arXiv.org</jtitle><date>2024-07-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For an educational purpose we develop the Python package AutoFreeFem which generates all ingredients for shape optimization with non-linear multi-physics in FreeFEM++ and also outputs the expressions for use in LaTex. As an input, the objective function and the weak form of the problem have to be specified only once. This ensures consistency between the simulation code and its documentation. In particular, AutoFreeFem provides the linearization of the state equation, the adjoint problem, the shape derivative, as well as a basic implementation of the level-set based mesh evolution method for shape optimization. For the computation of shape derivatives we utilize the mathematical Lagrangian approach for differentiating PDE-constrained shape functions. Differentiation is done symbolically using Sympy. In numerical experiments we verify the accuracy of the computed derivatives. Finally, we showcase the capabilities of AutoFreeFem by considering shape optimization of a non-linear diffusion problem, linear and non-linear elasticity problems, a thermo-elasticity problem and a fluid-structure interaction problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081976945 |
source | Publicly Available Content Database |
subjects | Derivatives Elasticity Equations of state Fluid-structure interaction Latex Optimization Shape functions Shape optimization Topology optimization |
title | AutoFreeFem: Automatic code generation with FreeFEM++ and LaTex output for shape and topology optimization of non-linear multi-physics problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AutoFreeFem:%20Automatic%20code%20generation%20with%20FreeFEM++%20and%20LaTex%20output%20for%20shape%20and%20topology%20optimization%20of%20non-linear%20multi-physics%20problems&rft.jtitle=arXiv.org&rft.au=Allaire,%20Gr%C3%A9goire&rft.date=2024-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081976945%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30819769453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081976945&rft_id=info:pmid/&rfr_iscdi=true |