Loading…

Mitigating Background Shift in Class-Incremental Semantic Segmentation

Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Park, Gilhan, Moon, WonJun, Lee, SuBeen, Tae-Young, Kim, Jae-Pil Heo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Park, Gilhan
Moon, WonJun
Lee, SuBeen
Tae-Young, Kim
Jae-Pil Heo
description Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081978541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081978541</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819785413</originalsourceid><addsrcrecordid>eNqNisEOgjAQBRsTE4nyD008k5QWBK8SiR484d00WOoibLVd_l9i_ABPbzLzFiySSqVJmUm5YnEIvRBC7gqZ5ypi9QUIrCZAyw-6fVrvJrzz5gEdcUBeDTqE5IytN6NB0gNvzKiRoJ3BfhWBww1bdnoIJv7tmm3r47U6JS_v3pMJdOvd5HFONyXKdF-UeZaq_14fzvs7gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081978541</pqid></control><display><type>article</type><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><source>Publicly Available Content (ProQuest)</source><creator>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</creator><creatorcontrib>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</creatorcontrib><description>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Distillation ; Knowledge management ; Labeling ; Labels ; Semantic segmentation ; Semantics ; Separation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3081978541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Park, Gilhan</creatorcontrib><creatorcontrib>Moon, WonJun</creatorcontrib><creatorcontrib>Lee, SuBeen</creatorcontrib><creatorcontrib>Tae-Young, Kim</creatorcontrib><creatorcontrib>Jae-Pil Heo</creatorcontrib><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><title>arXiv.org</title><description>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</description><subject>Classifiers</subject><subject>Distillation</subject><subject>Knowledge management</subject><subject>Labeling</subject><subject>Labels</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Separation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEOgjAQBRsTE4nyD008k5QWBK8SiR484d00WOoibLVd_l9i_ABPbzLzFiySSqVJmUm5YnEIvRBC7gqZ5ypi9QUIrCZAyw-6fVrvJrzz5gEdcUBeDTqE5IytN6NB0gNvzKiRoJ3BfhWBww1bdnoIJv7tmm3r47U6JS_v3pMJdOvd5HFONyXKdF-UeZaq_14fzvs7gA</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Park, Gilhan</creator><creator>Moon, WonJun</creator><creator>Lee, SuBeen</creator><creator>Tae-Young, Kim</creator><creator>Jae-Pil Heo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240716</creationdate><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><author>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819785413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Distillation</topic><topic>Knowledge management</topic><topic>Labeling</topic><topic>Labels</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Gilhan</creatorcontrib><creatorcontrib>Moon, WonJun</creatorcontrib><creatorcontrib>Lee, SuBeen</creatorcontrib><creatorcontrib>Tae-Young, Kim</creatorcontrib><creatorcontrib>Jae-Pil Heo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gilhan</au><au>Moon, WonJun</au><au>Lee, SuBeen</au><au>Tae-Young, Kim</au><au>Jae-Pil Heo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mitigating Background Shift in Class-Incremental Semantic Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2024-07-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081978541
source Publicly Available Content (ProQuest)
subjects Classifiers
Distillation
Knowledge management
Labeling
Labels
Semantic segmentation
Semantics
Separation
title Mitigating Background Shift in Class-Incremental Semantic Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mitigating%20Background%20Shift%20in%20Class-Incremental%20Semantic%20Segmentation&rft.jtitle=arXiv.org&rft.au=Park,%20Gilhan&rft.date=2024-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081978541%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30819785413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081978541&rft_id=info:pmid/&rfr_iscdi=true