Loading…
Mitigating Background Shift in Class-Incremental Semantic Segmentation
Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Park, Gilhan Moon, WonJun Lee, SuBeen Tae-Young, Kim Jae-Pil Heo |
description | Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081978541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081978541</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819785413</originalsourceid><addsrcrecordid>eNqNisEOgjAQBRsTE4nyD008k5QWBK8SiR484d00WOoibLVd_l9i_ABPbzLzFiySSqVJmUm5YnEIvRBC7gqZ5ypi9QUIrCZAyw-6fVrvJrzz5gEdcUBeDTqE5IytN6NB0gNvzKiRoJ3BfhWBww1bdnoIJv7tmm3r47U6JS_v3pMJdOvd5HFONyXKdF-UeZaq_14fzvs7gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081978541</pqid></control><display><type>article</type><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><source>Publicly Available Content (ProQuest)</source><creator>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</creator><creatorcontrib>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</creatorcontrib><description>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Distillation ; Knowledge management ; Labeling ; Labels ; Semantic segmentation ; Semantics ; Separation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3081978541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Park, Gilhan</creatorcontrib><creatorcontrib>Moon, WonJun</creatorcontrib><creatorcontrib>Lee, SuBeen</creatorcontrib><creatorcontrib>Tae-Young, Kim</creatorcontrib><creatorcontrib>Jae-Pil Heo</creatorcontrib><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><title>arXiv.org</title><description>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</description><subject>Classifiers</subject><subject>Distillation</subject><subject>Knowledge management</subject><subject>Labeling</subject><subject>Labels</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Separation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEOgjAQBRsTE4nyD008k5QWBK8SiR484d00WOoibLVd_l9i_ABPbzLzFiySSqVJmUm5YnEIvRBC7gqZ5ypi9QUIrCZAyw-6fVrvJrzz5gEdcUBeDTqE5IytN6NB0gNvzKiRoJ3BfhWBww1bdnoIJv7tmm3r47U6JS_v3pMJdOvd5HFONyXKdF-UeZaq_14fzvs7gA</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Park, Gilhan</creator><creator>Moon, WonJun</creator><creator>Lee, SuBeen</creator><creator>Tae-Young, Kim</creator><creator>Jae-Pil Heo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240716</creationdate><title>Mitigating Background Shift in Class-Incremental Semantic Segmentation</title><author>Park, Gilhan ; Moon, WonJun ; Lee, SuBeen ; Tae-Young, Kim ; Jae-Pil Heo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819785413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Distillation</topic><topic>Knowledge management</topic><topic>Labeling</topic><topic>Labels</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Gilhan</creatorcontrib><creatorcontrib>Moon, WonJun</creatorcontrib><creatorcontrib>Lee, SuBeen</creatorcontrib><creatorcontrib>Tae-Young, Kim</creatorcontrib><creatorcontrib>Jae-Pil Heo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gilhan</au><au>Moon, WonJun</au><au>Lee, SuBeen</au><au>Tae-Young, Kim</au><au>Jae-Pil Heo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mitigating Background Shift in Class-Incremental Semantic Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2024-07-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Class-Incremental Semantic Segmentation(CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes(i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081978541 |
source | Publicly Available Content (ProQuest) |
subjects | Classifiers Distillation Knowledge management Labeling Labels Semantic segmentation Semantics Separation |
title | Mitigating Background Shift in Class-Incremental Semantic Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mitigating%20Background%20Shift%20in%20Class-Incremental%20Semantic%20Segmentation&rft.jtitle=arXiv.org&rft.au=Park,%20Gilhan&rft.date=2024-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081978541%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30819785413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3081978541&rft_id=info:pmid/&rfr_iscdi=true |