Loading…
Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management
Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an inte...
Saved in:
Published in: | Computing 2024-08, Vol.106 (8), p.2521-2539 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33 |
container_end_page | 2539 |
container_issue | 8 |
container_start_page | 2521 |
container_title | Computing |
container_volume | 106 |
creator | Cai, Lu Yan, Yongcai Tang, Zhongming Liu, Aijun |
description | Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP & VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348. |
doi_str_mv | 10.1007/s00607-021-00972-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082402832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082402832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhsOisOO4f2BPAc-t1Un66yiDugsDXlzYW0h3Km2kO-lNMsL4A_zdG23Bm6eiivd5Cx5CfpZwWQI0VxGghqYAVhYAXcMK8Y1sSsHrooKqOSEbgBIK0VZ_v5OzGJ8AgPG225DXnZ8m1fugkn1Gqm1MwfaHZL2jfkl2ti_qfZm9xokqp6maRh9sepyp8SFfqHUJp8mO6BKNh2WZjnR4VNbRXkXUNMNjQHR08POSm91I0WEYj3RWTo04Z-6cnBo1RfzxMbfkz-3Nw-5Xsb-_-7273hcDL7tUdH2tmrplQjM03LQgagMaGLQCmn7otcYKet1DVTe6G3jXouhUyYwxWjQD51tysfYuwf87YEzyyR-Cyy8lh9wLrOUsp9iaGoKPMaCRS7CzCkdZgnzzLVffMvuW776lyBBfoZjDbsTwWf0F9R8MMIby</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082402832</pqid></control><display><type>article</type><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><source>Springer Nature</source><creator>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</creator><creatorcontrib>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</creatorcontrib><description>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP & VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-021-00972-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial Intelligence ; Clean energy ; Collaboration ; Computation ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Design optimization ; Distribution centers ; Energy distribution ; Energy management ; Genetic algorithms ; Hybrid systems ; Information Systems Applications (incl.Internet) ; Integer programming ; Inventory control ; Logistics ; Mixed integer ; Multiple objective analysis ; Optimization ; Optimization models ; Regular Paper ; Software Engineering ; Supply chains ; Systems design</subject><ispartof>Computing, 2024-08, Vol.106 (8), p.2521-2539</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</citedby><cites>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Yan, Yongcai</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><title>Computing</title><addtitle>Computing</addtitle><description>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP & VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</description><subject>Artificial Intelligence</subject><subject>Clean energy</subject><subject>Collaboration</subject><subject>Computation</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Design optimization</subject><subject>Distribution centers</subject><subject>Energy distribution</subject><subject>Energy management</subject><subject>Genetic algorithms</subject><subject>Hybrid systems</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Integer programming</subject><subject>Inventory control</subject><subject>Logistics</subject><subject>Mixed integer</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Regular Paper</subject><subject>Software Engineering</subject><subject>Supply chains</subject><subject>Systems design</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhsOisOO4f2BPAc-t1Un66yiDugsDXlzYW0h3Km2kO-lNMsL4A_zdG23Bm6eiivd5Cx5CfpZwWQI0VxGghqYAVhYAXcMK8Y1sSsHrooKqOSEbgBIK0VZ_v5OzGJ8AgPG225DXnZ8m1fugkn1Gqm1MwfaHZL2jfkl2ti_qfZm9xokqp6maRh9sepyp8SFfqHUJp8mO6BKNh2WZjnR4VNbRXkXUNMNjQHR08POSm91I0WEYj3RWTo04Z-6cnBo1RfzxMbfkz-3Nw-5Xsb-_-7273hcDL7tUdH2tmrplQjM03LQgagMaGLQCmn7otcYKet1DVTe6G3jXouhUyYwxWjQD51tysfYuwf87YEzyyR-Cyy8lh9wLrOUsp9iaGoKPMaCRS7CzCkdZgnzzLVffMvuW776lyBBfoZjDbsTwWf0F9R8MMIby</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cai, Lu</creator><creator>Yan, Yongcai</creator><creator>Tang, Zhongming</creator><creator>Liu, Aijun</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240801</creationdate><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><author>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Clean energy</topic><topic>Collaboration</topic><topic>Computation</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Design optimization</topic><topic>Distribution centers</topic><topic>Energy distribution</topic><topic>Energy management</topic><topic>Genetic algorithms</topic><topic>Hybrid systems</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Integer programming</topic><topic>Inventory control</topic><topic>Logistics</topic><topic>Mixed integer</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Regular Paper</topic><topic>Software Engineering</topic><topic>Supply chains</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Yan, Yongcai</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Lu</au><au>Yan, Yongcai</au><au>Tang, Zhongming</au><au>Liu, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>106</volume><issue>8</issue><spage>2521</spage><epage>2539</epage><pages>2521-2539</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP & VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-021-00972-4</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2024-08, Vol.106 (8), p.2521-2539 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_3082402832 |
source | Springer Nature |
subjects | Artificial Intelligence Clean energy Collaboration Computation Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Design optimization Distribution centers Energy distribution Energy management Genetic algorithms Hybrid systems Information Systems Applications (incl.Internet) Integer programming Inventory control Logistics Mixed integer Multiple objective analysis Optimization Optimization models Regular Paper Software Engineering Supply chains Systems design |
title | Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20distribution%20optimization%20model%20and%20algorithm%20for%20an%20intelligent%20supply%20chain%20based%20on%20green%20computing%20energy%20management&rft.jtitle=Computing&rft.au=Cai,%20Lu&rft.date=2024-08-01&rft.volume=106&rft.issue=8&rft.spage=2521&rft.epage=2539&rft.pages=2521-2539&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-021-00972-4&rft_dat=%3Cproquest_cross%3E3082402832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082402832&rft_id=info:pmid/&rfr_iscdi=true |