Loading…

Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management

Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an inte...

Full description

Saved in:
Bibliographic Details
Published in:Computing 2024-08, Vol.106 (8), p.2521-2539
Main Authors: Cai, Lu, Yan, Yongcai, Tang, Zhongming, Liu, Aijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33
cites cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33
container_end_page 2539
container_issue 8
container_start_page 2521
container_title Computing
container_volume 106
creator Cai, Lu
Yan, Yongcai
Tang, Zhongming
Liu, Aijun
description Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP & VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.
doi_str_mv 10.1007/s00607-021-00972-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082402832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082402832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhsOisOO4f2BPAc-t1Un66yiDugsDXlzYW0h3Km2kO-lNMsL4A_zdG23Bm6eiivd5Cx5CfpZwWQI0VxGghqYAVhYAXcMK8Y1sSsHrooKqOSEbgBIK0VZ_v5OzGJ8AgPG225DXnZ8m1fugkn1Gqm1MwfaHZL2jfkl2ti_qfZm9xokqp6maRh9sepyp8SFfqHUJp8mO6BKNh2WZjnR4VNbRXkXUNMNjQHR08POSm91I0WEYj3RWTo04Z-6cnBo1RfzxMbfkz-3Nw-5Xsb-_-7273hcDL7tUdH2tmrplQjM03LQgagMaGLQCmn7otcYKet1DVTe6G3jXouhUyYwxWjQD51tysfYuwf87YEzyyR-Cyy8lh9wLrOUsp9iaGoKPMaCRS7CzCkdZgnzzLVffMvuW776lyBBfoZjDbsTwWf0F9R8MMIby</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082402832</pqid></control><display><type>article</type><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><source>Springer Nature</source><creator>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</creator><creatorcontrib>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</creatorcontrib><description>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP &amp; VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-021-00972-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial Intelligence ; Clean energy ; Collaboration ; Computation ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Design optimization ; Distribution centers ; Energy distribution ; Energy management ; Genetic algorithms ; Hybrid systems ; Information Systems Applications (incl.Internet) ; Integer programming ; Inventory control ; Logistics ; Mixed integer ; Multiple objective analysis ; Optimization ; Optimization models ; Regular Paper ; Software Engineering ; Supply chains ; Systems design</subject><ispartof>Computing, 2024-08, Vol.106 (8), p.2521-2539</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</citedby><cites>FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Yan, Yongcai</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><title>Computing</title><addtitle>Computing</addtitle><description>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP &amp; VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</description><subject>Artificial Intelligence</subject><subject>Clean energy</subject><subject>Collaboration</subject><subject>Computation</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Design optimization</subject><subject>Distribution centers</subject><subject>Energy distribution</subject><subject>Energy management</subject><subject>Genetic algorithms</subject><subject>Hybrid systems</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Integer programming</subject><subject>Inventory control</subject><subject>Logistics</subject><subject>Mixed integer</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Regular Paper</subject><subject>Software Engineering</subject><subject>Supply chains</subject><subject>Systems design</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhsOisOO4f2BPAc-t1Un66yiDugsDXlzYW0h3Km2kO-lNMsL4A_zdG23Bm6eiivd5Cx5CfpZwWQI0VxGghqYAVhYAXcMK8Y1sSsHrooKqOSEbgBIK0VZ_v5OzGJ8AgPG225DXnZ8m1fugkn1Gqm1MwfaHZL2jfkl2ti_qfZm9xokqp6maRh9sepyp8SFfqHUJp8mO6BKNh2WZjnR4VNbRXkXUNMNjQHR08POSm91I0WEYj3RWTo04Z-6cnBo1RfzxMbfkz-3Nw-5Xsb-_-7273hcDL7tUdH2tmrplQjM03LQgagMaGLQCmn7otcYKet1DVTe6G3jXouhUyYwxWjQD51tysfYuwf87YEzyyR-Cyy8lh9wLrOUsp9iaGoKPMaCRS7CzCkdZgnzzLVffMvuW776lyBBfoZjDbsTwWf0F9R8MMIby</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cai, Lu</creator><creator>Yan, Yongcai</creator><creator>Tang, Zhongming</creator><creator>Liu, Aijun</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240801</creationdate><title>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</title><author>Cai, Lu ; Yan, Yongcai ; Tang, Zhongming ; Liu, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Clean energy</topic><topic>Collaboration</topic><topic>Computation</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Design optimization</topic><topic>Distribution centers</topic><topic>Energy distribution</topic><topic>Energy management</topic><topic>Genetic algorithms</topic><topic>Hybrid systems</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Integer programming</topic><topic>Inventory control</topic><topic>Logistics</topic><topic>Mixed integer</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Regular Paper</topic><topic>Software Engineering</topic><topic>Supply chains</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Lu</creatorcontrib><creatorcontrib>Yan, Yongcai</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Lu</au><au>Yan, Yongcai</au><au>Tang, Zhongming</au><au>Liu, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>106</volume><issue>8</issue><spage>2521</spage><epage>2539</epage><pages>2521-2539</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Collaborative distribution is the core of modern logistics, and the collaborative distribution centre is the physical location of distribution. This article aims to study the use of green computing energy management to promote a collaborative distribution optimization model and algorithm for an intelligent supply chain. A multiobjective genetic algorithm for energy management using green computing and a multiobjective hybrid genetic algorithm based on parallel selection methods are designed and implemented. A joint optimization model of VRP &amp; VFP for logistics distribution is established. Collaborative system design and collaborative system operation inventory control issues are integrated. Considering uncertain demand, a multiobjective mixed-integer programming model of energy management using green computing is established to solve this problem. Experimental research shows that the optimal solution is found before the optimal operation of the 24th-generation collaborative system. The designed functional value of the collaborative system is 66109, and the optimal operating value of the collaborative system is 57348.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-021-00972-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-485X
ispartof Computing, 2024-08, Vol.106 (8), p.2521-2539
issn 0010-485X
1436-5057
language eng
recordid cdi_proquest_journals_3082402832
source Springer Nature
subjects Artificial Intelligence
Clean energy
Collaboration
Computation
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Design optimization
Distribution centers
Energy distribution
Energy management
Genetic algorithms
Hybrid systems
Information Systems Applications (incl.Internet)
Integer programming
Inventory control
Logistics
Mixed integer
Multiple objective analysis
Optimization
Optimization models
Regular Paper
Software Engineering
Supply chains
Systems design
title Collaborative distribution optimization model and algorithm for an intelligent supply chain based on green computing energy management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20distribution%20optimization%20model%20and%20algorithm%20for%20an%20intelligent%20supply%20chain%20based%20on%20green%20computing%20energy%20management&rft.jtitle=Computing&rft.au=Cai,%20Lu&rft.date=2024-08-01&rft.volume=106&rft.issue=8&rft.spage=2521&rft.epage=2539&rft.pages=2521-2539&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-021-00972-4&rft_dat=%3Cproquest_cross%3E3082402832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9b6a76824d2ef3f8046f0d0208407bcbdde50bdb0567d9c398e49a12fffd47c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082402832&rft_id=info:pmid/&rfr_iscdi=true