Loading…
Meteorological Anomalies and Strong Earthquakes: A Case Study of the Petropavlovsk-Kamchatsky Region, Kamchatka Peninsula
— Long-term (1962‒2020) observations of air temperature and atmospheric pressure at two weather stations in the region of Petropavlovsk-Kamchatsky, Kamchatka Krai, are analyzed to examine the hypotheses about a connection between increased and decreased meteorological parameter values and their cont...
Saved in:
Published in: | Izvestiya. Physics of the solid earth 2024-06, Vol.60 (3), p.494-507 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | — Long-term (1962‒2020) observations of air temperature and atmospheric pressure at two weather stations in the region of Petropavlovsk-Kamchatsky, Kamchatka Krai, are analyzed to examine the hypotheses about a connection between increased and decreased meteorological parameter values and their contrasting changes with a final stage of preparation of local Kamchatka earthquakes with magnitudes 5.2‒8.3, which occurred at epicentral distances of 22–440 km and caused perceptible shaking with intensity
I
MSK
-
64
≥ 4–5. To identify meteorological anomalies, we used an empirical method comparing daily mean air temperatures and atmospheric pressures with daily averages of their annual seasonal-mean functions and a formalized method estimating the minimum normalized entropy
En
, the logarithm of the curtosis coefficient logκ, and the autoregressive measure of nonstationarity
Q
2
of the time series of air temperature and atmospheric pressure in a moving time window with a length of 112 days shifted by one day. Various types of meteoanomalies before earthquakes were studied on time intervals of seven and 30 days. The correlation between the detected anomalies and subsequent earthquakes was evaluated from the ratio of reliability and validity of the conditional meteorological precursor. It is found that the manifestation of various types of meteorological anomalies before earthquakes is mainly of a random nature. The lack of a pronounced correlation between air temperature increases and subsequent earthquakes casts doubt on the reality of the mechanism of generation of thermal surface anomalies before earthquakes in the lithosphere‒atmosphere‒ionosphere‒magnetosphere coupling (LAIMC) model for the study region. The methods used for meteorological data analysis can be applied in seismic forecasting in the region of the Petropavlovsk-Yelizovo agglomeration, Kamchatka Krai, for diagnosing weather-dependent anomalies in the changes of the ground-based observation data. |
---|---|
ISSN: | 1069-3513 1555-6506 |
DOI: | 10.1134/S1069351324700502 |