Loading…

Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems

Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically const...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Li, Weitang, Ren, Jiajun, Yang, Hengrui, Wang, Haobin, Shuai, Zhigang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Weitang
Ren, Jiajun
Yang, Hengrui
Wang, Haobin
Shuai, Zhigang
description Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
doi_str_mv 10.48550/arxiv.2407.13098
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082706485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082706485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213</originalsourceid><addsrcrecordid>eNpdUMlqwzAQFYVCQ5oP6E3Qs9ORZC3pLYQugVBT4ntQ3BHYtS1Xkrv8fR3SU0-Pt83AI-SGwTI3UsKdDd_155LnoJdMwMpckBkXgmUm5_yKLGJsAIArzaUUM9IUQ6o729IyINIS--gDfcH05cM7LQYMNvkQqZvUf-a-7sbWptr38Z6uh6GtqzOjyZ-aPX0dbZ_Gju5_YsIuXpNLZ9uIiz-ck_Lxodw8Z7viabtZ7zIrucw0HCtljDNKGQmrN8GPnAnGkaE8GVppUVlAMEwxJ3JE7qCqEBhj1k3RObk9nx2C_xgxpkPjx9BPHw8CDNegpp3ELzSUWeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082706485</pqid></control><display><type>article</type><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</creator><creatorcontrib>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</creatorcontrib><description>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2407.13098</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Charge transport ; Computational efficiency ; Graph theory ; Multilayers ; Operators ; Spin dynamics ; Temperature effects ; Tensors ; Topology ; Wave functions</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3082706485?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Yang, Hengrui</creatorcontrib><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><title>arXiv.org</title><description>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</description><subject>Algorithms</subject><subject>Charge transport</subject><subject>Computational efficiency</subject><subject>Graph theory</subject><subject>Multilayers</subject><subject>Operators</subject><subject>Spin dynamics</subject><subject>Temperature effects</subject><subject>Tensors</subject><subject>Topology</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUMlqwzAQFYVCQ5oP6E3Qs9ORZC3pLYQugVBT4ntQ3BHYtS1Xkrv8fR3SU0-Pt83AI-SGwTI3UsKdDd_155LnoJdMwMpckBkXgmUm5_yKLGJsAIArzaUUM9IUQ6o729IyINIS--gDfcH05cM7LQYMNvkQqZvUf-a-7sbWptr38Z6uh6GtqzOjyZ-aPX0dbZ_Gju5_YsIuXpNLZ9uIiz-ck_Lxodw8Z7viabtZ7zIrucw0HCtljDNKGQmrN8GPnAnGkaE8GVppUVlAMEwxJ3JE7qCqEBhj1k3RObk9nx2C_xgxpkPjx9BPHw8CDNegpp3ELzSUWeA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Li, Weitang</creator><creator>Ren, Jiajun</creator><creator>Yang, Hengrui</creator><creator>Wang, Haobin</creator><creator>Shuai, Zhigang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><author>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Charge transport</topic><topic>Computational efficiency</topic><topic>Graph theory</topic><topic>Multilayers</topic><topic>Operators</topic><topic>Spin dynamics</topic><topic>Temperature effects</topic><topic>Tensors</topic><topic>Topology</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Yang, Hengrui</creatorcontrib><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weitang</au><au>Ren, Jiajun</au><au>Yang, Hengrui</au><au>Wang, Haobin</au><au>Shuai, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2407.13098</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3082706485
source ProQuest - Publicly Available Content Database
subjects Algorithms
Charge transport
Computational efficiency
Graph theory
Multilayers
Operators
Spin dynamics
Temperature effects
Tensors
Topology
Wave functions
title Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Tree%20Tensor%20Network%20Operators%20for%20Tensor%20Network%20Simulations:%20Applications%20to%20Open%20Quantum%20Systems&rft.jtitle=arXiv.org&rft.au=Li,%20Weitang&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2407.13098&rft_dat=%3Cproquest%3E3082706485%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082706485&rft_id=info:pmid/&rfr_iscdi=true