Loading…
Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically const...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Weitang Ren, Jiajun Yang, Hengrui Wang, Haobin Shuai, Zhigang |
description | Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach. |
doi_str_mv | 10.48550/arxiv.2407.13098 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082706485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082706485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213</originalsourceid><addsrcrecordid>eNpdUMlqwzAQFYVCQ5oP6E3Qs9ORZC3pLYQugVBT4ntQ3BHYtS1Xkrv8fR3SU0-Pt83AI-SGwTI3UsKdDd_155LnoJdMwMpckBkXgmUm5_yKLGJsAIArzaUUM9IUQ6o729IyINIS--gDfcH05cM7LQYMNvkQqZvUf-a-7sbWptr38Z6uh6GtqzOjyZ-aPX0dbZ_Gju5_YsIuXpNLZ9uIiz-ck_Lxodw8Z7viabtZ7zIrucw0HCtljDNKGQmrN8GPnAnGkaE8GVppUVlAMEwxJ3JE7qCqEBhj1k3RObk9nx2C_xgxpkPjx9BPHw8CDNegpp3ELzSUWeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082706485</pqid></control><display><type>article</type><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</creator><creatorcontrib>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</creatorcontrib><description>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2407.13098</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Charge transport ; Computational efficiency ; Graph theory ; Multilayers ; Operators ; Spin dynamics ; Temperature effects ; Tensors ; Topology ; Wave functions</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3082706485?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Yang, Hengrui</creatorcontrib><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><title>arXiv.org</title><description>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</description><subject>Algorithms</subject><subject>Charge transport</subject><subject>Computational efficiency</subject><subject>Graph theory</subject><subject>Multilayers</subject><subject>Operators</subject><subject>Spin dynamics</subject><subject>Temperature effects</subject><subject>Tensors</subject><subject>Topology</subject><subject>Wave functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUMlqwzAQFYVCQ5oP6E3Qs9ORZC3pLYQugVBT4ntQ3BHYtS1Xkrv8fR3SU0-Pt83AI-SGwTI3UsKdDd_155LnoJdMwMpckBkXgmUm5_yKLGJsAIArzaUUM9IUQ6o729IyINIS--gDfcH05cM7LQYMNvkQqZvUf-a-7sbWptr38Z6uh6GtqzOjyZ-aPX0dbZ_Gju5_YsIuXpNLZ9uIiz-ck_Lxodw8Z7viabtZ7zIrucw0HCtljDNKGQmrN8GPnAnGkaE8GVppUVlAMEwxJ3JE7qCqEBhj1k3RObk9nx2C_xgxpkPjx9BPHw8CDNegpp3ELzSUWeA</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Li, Weitang</creator><creator>Ren, Jiajun</creator><creator>Yang, Hengrui</creator><creator>Wang, Haobin</creator><creator>Shuai, Zhigang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</title><author>Li, Weitang ; Ren, Jiajun ; Yang, Hengrui ; Wang, Haobin ; Shuai, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Charge transport</topic><topic>Computational efficiency</topic><topic>Graph theory</topic><topic>Multilayers</topic><topic>Operators</topic><topic>Spin dynamics</topic><topic>Temperature effects</topic><topic>Tensors</topic><topic>Topology</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Yang, Hengrui</creatorcontrib><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weitang</au><au>Ren, Jiajun</au><au>Yang, Hengrui</au><au>Wang, Haobin</au><au>Shuai, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2407.13098</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3082706485 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Charge transport Computational efficiency Graph theory Multilayers Operators Spin dynamics Temperature effects Tensors Topology Wave functions |
title | Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Tree%20Tensor%20Network%20Operators%20for%20Tensor%20Network%20Simulations:%20Applications%20to%20Open%20Quantum%20Systems&rft.jtitle=arXiv.org&rft.au=Li,%20Weitang&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2407.13098&rft_dat=%3Cproquest%3E3082706485%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-70bc688f8668509d32b21312e1e5c6887673ca0e08161f34ee2f0cce0111af213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082706485&rft_id=info:pmid/&rfr_iscdi=true |