Loading…

Estimation of Kinetic Parameters and Spectroscopic Analysis of Dy3+-Activated CaSi2O5 Phosphor

The synthesis and characterization of Dy 3+ -activated CaSi 2 O 5 phosphor is reported. The phosphors were synthesized using a modified solid-state reaction method with variable concentrations of doping ions (0.1–2.5 mol.%) of Dy 3+ . The synthesized phosphors were characterized by X-ray diffraction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied spectroscopy 2024-07, Vol.91 (3), p.632-639
Main Authors: Jain, Prince, Jaiswal, Rishi, Dubey, Vikas, Tiwari, Kanchan, Kumar, M. Tanooj, Rao, M. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The synthesis and characterization of Dy 3+ -activated CaSi 2 O 5 phosphor is reported. The phosphors were synthesized using a modified solid-state reaction method with variable concentrations of doping ions (0.1–2.5 mol.%) of Dy 3+ . The synthesized phosphors were characterized by X-ray diffraction (XRD) analysis and the field emission scanning electron microscopy (FESEM) technique. The XRD pattern revealed that the doped phosphors had a cubic structure. FESEM micrographs clearly indicated that the particles crystallized in inhomogeneous morphology on a micrometer scale with a sporadic and asymmetrical shape. Photoluminescence excitation and emission spectra were monitored for variable doping concentrations and the emission found at 485 and 576 nm (excited at 353 nm). The corresponding transitions of the doping ion and concentration quenching effect were studied in detail. The 1931 CIE ( x , y ) chromaticity coordinates ( x = 0.30 and y = 0.31) showed the distribution of a spectral region calculated from PL emission spectra. On the basis of CIE analysis, the prepared phosphor is useful for white light emission in inorganic light-emitting diodes. As-synthesized phosphor was examined by thermoluminescence glow curve analysis with different doses of gamma and electron beam and corresponding kinetic parameters were calculated using the computerized glow curve deconvolution technique.
ISSN:0021-9037
1573-8647
DOI:10.1007/s10812-024-01764-2