Loading…
Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing
Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excito...
Saved in:
Published in: | Advanced functional materials 2024-07, Vol.34 (30), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783 |
container_end_page | n/a |
container_issue | 30 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Sun, Jianhui Zhang, Zhedong Chen, Yongyi Qiu, Meng Jin, Wei Ning, Cun‐Zheng Snaith, Henry J. Jen, Alex K.‐Y. Lei, Dangyuan |
description | Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging.
Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy. |
doi_str_mv | 10.1002/adfm.202401247 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083824180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083824180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wG3ts5fJtNl6Y8KLVZowd0wTW7s1CRTZxJrXfkIPqNP4oRKXbq6h8P5zoUTBJcYdTFC5EalWdEliDCECYuPghbmmHcoIuL4oPHTaXDm3BohHMeUtYLssVZlVRffn19DyCCpvJjqUhf6A9LrcL6yAN6arUxlykbUxQbScJFXVuVm650m4lYmT8MZWPPmXnQF4eg90R7QSThRTpfP58FJpnIHF7-3HSzGo_ngrjN5uL0f9CedhGISd5gSKQHaY1EMQLkgEXAskIKILBniwBSPsoQyWAqcAido2QNOKY-ox1QsaDu42vdurHmtwVVybWpb-peSIkEFYb7Op7r7VGKNcxYyubG6UHYnMZLNlrLZUh629EBvD2x1Drt_0rI_HE__2B_lA335</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083824180</pqid></control><display><type>article</type><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><source>Wiley</source><creator>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</creator><creatorcontrib>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</creatorcontrib><description>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging.
Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401247</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Cesium ; Defects ; Electrons ; Excitation spectra ; Excitons ; Infrared lasers ; Lasing ; Medical imaging ; Microlasers ; Multiphoton absorption ; Optical pumping ; perovskite quantum dots ; Perovskites ; Photons ; quantum defect ; Quantum dots ; quantum master equation ; Resonance ; Spectrum analysis ; three‐photon‐pumped excitonic lasing ; Threshold pump fluence ; transient absorption spectroscopy</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (30), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</cites><orcidid>0000-0001-9460-3512 ; 0000-0002-8963-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jianhui</creatorcontrib><creatorcontrib>Zhang, Zhedong</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Qiu, Meng</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ning, Cun‐Zheng</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><title>Advanced functional materials</title><description>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging.
Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</description><subject>Absorption spectroscopy</subject><subject>Cesium</subject><subject>Defects</subject><subject>Electrons</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Infrared lasers</subject><subject>Lasing</subject><subject>Medical imaging</subject><subject>Microlasers</subject><subject>Multiphoton absorption</subject><subject>Optical pumping</subject><subject>perovskite quantum dots</subject><subject>Perovskites</subject><subject>Photons</subject><subject>quantum defect</subject><subject>Quantum dots</subject><subject>quantum master equation</subject><subject>Resonance</subject><subject>Spectrum analysis</subject><subject>three‐photon‐pumped excitonic lasing</subject><subject>Threshold pump fluence</subject><subject>transient absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AUhYMoWKtb1wG3ts5fJtNl6Y8KLVZowd0wTW7s1CRTZxJrXfkIPqNP4oRKXbq6h8P5zoUTBJcYdTFC5EalWdEliDCECYuPghbmmHcoIuL4oPHTaXDm3BohHMeUtYLssVZlVRffn19DyCCpvJjqUhf6A9LrcL6yAN6arUxlykbUxQbScJFXVuVm650m4lYmT8MZWPPmXnQF4eg90R7QSThRTpfP58FJpnIHF7-3HSzGo_ngrjN5uL0f9CedhGISd5gSKQHaY1EMQLkgEXAskIKILBniwBSPsoQyWAqcAido2QNOKY-ox1QsaDu42vdurHmtwVVybWpb-peSIkEFYb7Op7r7VGKNcxYyubG6UHYnMZLNlrLZUh629EBvD2x1Drt_0rI_HE__2B_lA335</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sun, Jianhui</creator><creator>Zhang, Zhedong</creator><creator>Chen, Yongyi</creator><creator>Qiu, Meng</creator><creator>Jin, Wei</creator><creator>Ning, Cun‐Zheng</creator><creator>Snaith, Henry J.</creator><creator>Jen, Alex K.‐Y.</creator><creator>Lei, Dangyuan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid></search><sort><creationdate>20240701</creationdate><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><author>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Cesium</topic><topic>Defects</topic><topic>Electrons</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Infrared lasers</topic><topic>Lasing</topic><topic>Medical imaging</topic><topic>Microlasers</topic><topic>Multiphoton absorption</topic><topic>Optical pumping</topic><topic>perovskite quantum dots</topic><topic>Perovskites</topic><topic>Photons</topic><topic>quantum defect</topic><topic>Quantum dots</topic><topic>quantum master equation</topic><topic>Resonance</topic><topic>Spectrum analysis</topic><topic>three‐photon‐pumped excitonic lasing</topic><topic>Threshold pump fluence</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianhui</creatorcontrib><creatorcontrib>Zhang, Zhedong</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Qiu, Meng</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ning, Cun‐Zheng</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianhui</au><au>Zhang, Zhedong</au><au>Chen, Yongyi</au><au>Qiu, Meng</au><au>Jin, Wei</au><au>Ning, Cun‐Zheng</au><au>Snaith, Henry J.</au><au>Jen, Alex K.‐Y.</au><au>Lei, Dangyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging.
Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401247</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-07, Vol.34 (30), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3083824180 |
source | Wiley |
subjects | Absorption spectroscopy Cesium Defects Electrons Excitation spectra Excitons Infrared lasers Lasing Medical imaging Microlasers Multiphoton absorption Optical pumping perovskite quantum dots Perovskites Photons quantum defect Quantum dots quantum master equation Resonance Spectrum analysis three‐photon‐pumped excitonic lasing Threshold pump fluence transient absorption spectroscopy |
title | Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90Defect%E2%80%90Minimized,%20Three%E2%80%90Photon%E2%80%90Pumped%20Ultralow%E2%80%90Threshold%20Perovskite%20Excitonic%20Lasing&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20Jianhui&rft.date=2024-07-01&rft.volume=34&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401247&rft_dat=%3Cproquest_cross%3E3083824180%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083824180&rft_id=info:pmid/&rfr_iscdi=true |