Loading…

Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing

Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excito...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-07, Vol.34 (30), p.n/a
Main Authors: Sun, Jianhui, Zhang, Zhedong, Chen, Yongyi, Qiu, Meng, Jin, Wei, Ning, Cun‐Zheng, Snaith, Henry J., Jen, Alex K.‐Y., Lei, Dangyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced functional materials
container_volume 34
creator Sun, Jianhui
Zhang, Zhedong
Chen, Yongyi
Qiu, Meng
Jin, Wei
Ning, Cun‐Zheng
Snaith, Henry J.
Jen, Alex K.‐Y.
Lei, Dangyuan
description Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging. Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.
doi_str_mv 10.1002/adfm.202401247
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083824180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083824180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wG3ts5fJtNl6Y8KLVZowd0wTW7s1CRTZxJrXfkIPqNP4oRKXbq6h8P5zoUTBJcYdTFC5EalWdEliDCECYuPghbmmHcoIuL4oPHTaXDm3BohHMeUtYLssVZlVRffn19DyCCpvJjqUhf6A9LrcL6yAN6arUxlykbUxQbScJFXVuVm650m4lYmT8MZWPPmXnQF4eg90R7QSThRTpfP58FJpnIHF7-3HSzGo_ngrjN5uL0f9CedhGISd5gSKQHaY1EMQLkgEXAskIKILBniwBSPsoQyWAqcAido2QNOKY-ox1QsaDu42vdurHmtwVVybWpb-peSIkEFYb7Op7r7VGKNcxYyubG6UHYnMZLNlrLZUh629EBvD2x1Drt_0rI_HE__2B_lA335</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083824180</pqid></control><display><type>article</type><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><source>Wiley</source><creator>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</creator><creatorcontrib>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</creatorcontrib><description>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging. Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401247</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Cesium ; Defects ; Electrons ; Excitation spectra ; Excitons ; Infrared lasers ; Lasing ; Medical imaging ; Microlasers ; Multiphoton absorption ; Optical pumping ; perovskite quantum dots ; Perovskites ; Photons ; quantum defect ; Quantum dots ; quantum master equation ; Resonance ; Spectrum analysis ; three‐photon‐pumped excitonic lasing ; Threshold pump fluence ; transient absorption spectroscopy</subject><ispartof>Advanced functional materials, 2024-07, Vol.34 (30), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</cites><orcidid>0000-0001-9460-3512 ; 0000-0002-8963-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jianhui</creatorcontrib><creatorcontrib>Zhang, Zhedong</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Qiu, Meng</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ning, Cun‐Zheng</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><title>Advanced functional materials</title><description>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging. Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</description><subject>Absorption spectroscopy</subject><subject>Cesium</subject><subject>Defects</subject><subject>Electrons</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Infrared lasers</subject><subject>Lasing</subject><subject>Medical imaging</subject><subject>Microlasers</subject><subject>Multiphoton absorption</subject><subject>Optical pumping</subject><subject>perovskite quantum dots</subject><subject>Perovskites</subject><subject>Photons</subject><subject>quantum defect</subject><subject>Quantum dots</subject><subject>quantum master equation</subject><subject>Resonance</subject><subject>Spectrum analysis</subject><subject>three‐photon‐pumped excitonic lasing</subject><subject>Threshold pump fluence</subject><subject>transient absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AUhYMoWKtb1wG3ts5fJtNl6Y8KLVZowd0wTW7s1CRTZxJrXfkIPqNP4oRKXbq6h8P5zoUTBJcYdTFC5EalWdEliDCECYuPghbmmHcoIuL4oPHTaXDm3BohHMeUtYLssVZlVRffn19DyCCpvJjqUhf6A9LrcL6yAN6arUxlykbUxQbScJFXVuVm650m4lYmT8MZWPPmXnQF4eg90R7QSThRTpfP58FJpnIHF7-3HSzGo_ngrjN5uL0f9CedhGISd5gSKQHaY1EMQLkgEXAskIKILBniwBSPsoQyWAqcAido2QNOKY-ox1QsaDu42vdurHmtwVVybWpb-peSIkEFYb7Op7r7VGKNcxYyubG6UHYnMZLNlrLZUh629EBvD2x1Drt_0rI_HE__2B_lA335</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Sun, Jianhui</creator><creator>Zhang, Zhedong</creator><creator>Chen, Yongyi</creator><creator>Qiu, Meng</creator><creator>Jin, Wei</creator><creator>Ning, Cun‐Zheng</creator><creator>Snaith, Henry J.</creator><creator>Jen, Alex K.‐Y.</creator><creator>Lei, Dangyuan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid></search><sort><creationdate>20240701</creationdate><title>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</title><author>Sun, Jianhui ; Zhang, Zhedong ; Chen, Yongyi ; Qiu, Meng ; Jin, Wei ; Ning, Cun‐Zheng ; Snaith, Henry J. ; Jen, Alex K.‐Y. ; Lei, Dangyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Cesium</topic><topic>Defects</topic><topic>Electrons</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Infrared lasers</topic><topic>Lasing</topic><topic>Medical imaging</topic><topic>Microlasers</topic><topic>Multiphoton absorption</topic><topic>Optical pumping</topic><topic>perovskite quantum dots</topic><topic>Perovskites</topic><topic>Photons</topic><topic>quantum defect</topic><topic>Quantum dots</topic><topic>quantum master equation</topic><topic>Resonance</topic><topic>Spectrum analysis</topic><topic>three‐photon‐pumped excitonic lasing</topic><topic>Threshold pump fluence</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianhui</creatorcontrib><creatorcontrib>Zhang, Zhedong</creatorcontrib><creatorcontrib>Chen, Yongyi</creatorcontrib><creatorcontrib>Qiu, Meng</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ning, Cun‐Zheng</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><creatorcontrib>Lei, Dangyuan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianhui</au><au>Zhang, Zhedong</au><au>Chen, Yongyi</au><au>Qiu, Meng</au><au>Jin, Wei</au><au>Ning, Cun‐Zheng</au><au>Snaith, Henry J.</au><au>Jen, Alex K.‐Y.</au><au>Lei, Dangyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Three‐photon‐pumped (3PP) excitonic lasing in inorganic semiconductor quantum dots (QDs) is of particular importance for near‐infrared biophotonics and optical communications. However, the implementation of such lasers has been hindered severely by the required high pump thresholds. Here, 3PP excitonic lasing of all‐inorganic cesium lead bromide perovskite QDs (CsPbBr3 PQDs) embedded in a whispering‐gallery microcavity is demonstrated, and achieving a record low threshold of 3 mJ cm−2 by tuning the 3P pump energy in resonance with the S exciton state. Wavelength‐dispersive Z‐scan spectroscopy reveals that such reduced lasing threshold is attributed to the exciton resonance enhanced multiphoton absorption, which, as disclosed by the kinetics analysis of transient absorption spectroscopy (TAS), leads to the appearance of net gain at a pump fluence as low as 2.2 mJ cm−2, corresponding to an average S exciton population of 1.5. A microscopic model incorporating the quantum master equation reproduces the TAS results and provides the intrinsic parameters of biexciton relaxation for lasing. The 3PP resonant excitonic transition is the most favored multiphoton pumping process that minimizes quantum defect (6.8% of the pump photon energy) to realize optical gain at low threshold, marking a major step toward using all‐inorganic perovskite QDs for on‐chip integrated microlasers and multiphoton bioimaging. Ultralow‐threshold three‐photon‐pumped (3PP) excitonic lasing with the least quantum defect is realized by exciton‐resonant multiphoton pumping on CsPbBr3 perovskite quantum dots (QDs). The 3PP lasing show a threshold of 3.0 mJ cm−2, five times lower than the previous record for inorganic semiconductor QDs, and a quantum defect as small as 6.8% of the pump photon energy.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401247</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9460-3512</orcidid><orcidid>https://orcid.org/0000-0002-8963-0193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (30), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3083824180
source Wiley
subjects Absorption spectroscopy
Cesium
Defects
Electrons
Excitation spectra
Excitons
Infrared lasers
Lasing
Medical imaging
Microlasers
Multiphoton absorption
Optical pumping
perovskite quantum dots
Perovskites
Photons
quantum defect
Quantum dots
quantum master equation
Resonance
Spectrum analysis
three‐photon‐pumped excitonic lasing
Threshold pump fluence
transient absorption spectroscopy
title Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90Defect%E2%80%90Minimized,%20Three%E2%80%90Photon%E2%80%90Pumped%20Ultralow%E2%80%90Threshold%20Perovskite%20Excitonic%20Lasing&rft.jtitle=Advanced%20functional%20materials&rft.au=Sun,%20Jianhui&rft.date=2024-07-01&rft.volume=34&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401247&rft_dat=%3Cproquest_cross%3E3083824180%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-4a8d2e39457ee36825e6180ae52b406e4a65fc34eb81de620b9e633653d2ea783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083824180&rft_id=info:pmid/&rfr_iscdi=true