Loading…

3D Carbon Allotropes: Topological Quantum Materials with Obstructed Atomic Insulating Phases, Multiple Bulk‐Boundary Correspondences, and Real Topology

The study of topological phases with unconventional bulk‐boundary correspondences and nontrivial real Chern number has garnered significant attention in the topological states of matter. Using the first‐principle calculations and theoretical analysis, a high‐throughput material screening of the 3D o...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-07, Vol.34 (30), p.n/a
Main Authors: Wang, Jianhua, Zhang, Ting‐Ting, Zhang, Qianwen, Cheng, Xia, Wang, Wenhong, Qian, Shifeng, Cheng, Zhenxiang, Zhang, Gang, Wang, Xiaotian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study of topological phases with unconventional bulk‐boundary correspondences and nontrivial real Chern number has garnered significant attention in the topological states of matter. Using the first‐principle calculations and theoretical analysis, a high‐throughput material screening of the 3D obstructed atomic insulators (OAIs) and 3D real Chern insulators (RCIs) based on the Samara Carbon Allotrope Database (SACADA) are performed. Results show that 422 out of 703 3D carbon allotropes are 3D OAIs with multiple bulk‐boundary correspondences, including 2D obstructed surface states (OSSs) and 1D hinge states, which are in 1D and 2Ds lower than the 3D bulk, respectively. The 2D OSSs in these OAIs can be modified when subjected to appropriate boundaries, which benefits the investigation of surface engineering and the development of efficient topological catalysts. These 422 OAIs, which have 2D and 1D boundary states, are excellent platforms for multi‐dimensional topological boundaries research. Remarkably, 138 of 422 OAIs are also 3D RCIs, which show a nontrivial real topology in the protection of spacetime inversion symmetry. This work not only provides a comprehensive list of 3D carbon‐based OAIs and RCIs, but also guides their application in various aspects based on multiple bulk‐boundary correspondences and real topological phases. A high‐throughput material screening of the 3D obstructed atomic insulators (OAIs) and 3D real Chern insulators (RCIs) based on the Samara Carbon Allotrope Database (SACADA) is performed. Results show 422 out of 703 3D carbon allotropes are 3D OAIs with multiple bulk‐boundary correspondences. Remarkably, 138 of 422 OAIs are also 3D RCIs with a nontrivial real topology.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202316079