Loading…

Spreading of a viscoelastic drop on a solid substrate

We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2024-07, Vol.988, Article A51
Main Authors: Rostami, Peyman, Fricke, Mathis, Schubotz, Simon, Patel, Himanshu, Azizmalayeri, Reza, Auernhammer, Günter K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 988
creator Rostami, Peyman
Fricke, Mathis
Schubotz, Simon
Patel, Himanshu
Azizmalayeri, Reza
Auernhammer, Günter K.
description We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.
doi_str_mv 10.1017/jfm.2024.450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083835963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_450</cupid><sourcerecordid>3083835963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f8CCV3edycdm9yjFLyh4UM8hm2TKlrZZk63gv3eLBS-eZhie9x14GLtGqBBQ361pW3HgspIKTtgMZd2WupbqlM0AOC8ROZyzi5zXACig1TOm3oYUrO93qyJSYYuvPrsYNjaPvSt8ikMRd9M5x03vi7zv8pjsGC7ZGdlNDlfHOWcfjw_vi-dy-fr0srhflo5zPZaavFfStegCUuAOCbzutA9q2tqudlqRJBG4to1FcoKIrLAKrexqbISYs5vf3iHFz33Io1nHfdpNL42ARjRCtfWBuv2lXIo5p0BmSP3Wpm-DYA5izCTGHMSYScyEV0fcbrvU-1X4a_038AOHHGU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083835963</pqid></control><display><type>article</type><title>Spreading of a viscoelastic drop on a solid substrate</title><source>Cambridge University Press</source><creator>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</creator><creatorcontrib>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</creatorcontrib><description>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.450</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Contact angle ; JFM Papers ; Polymers ; Relaxation time ; Rheology ; Shear ; Shear rate ; Shear thinning (liquids) ; Shear viscosity ; Spreading ; Substrates ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2024-07, Vol.988, Article A51</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</cites><orcidid>0000-0001-8659-7132 ; 0000-0003-1515-0143 ; 0000-0002-6281-6617 ; 0000-0002-1066-966X ; 0000-0002-5113-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024004506/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Fricke, Mathis</creatorcontrib><creatorcontrib>Schubotz, Simon</creatorcontrib><creatorcontrib>Patel, Himanshu</creatorcontrib><creatorcontrib>Azizmalayeri, Reza</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><title>Spreading of a viscoelastic drop on a solid substrate</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</description><subject>Contact angle</subject><subject>JFM Papers</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Shear viscosity</subject><subject>Spreading</subject><subject>Substrates</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f8CCV3edycdm9yjFLyh4UM8hm2TKlrZZk63gv3eLBS-eZhie9x14GLtGqBBQ361pW3HgspIKTtgMZd2WupbqlM0AOC8ROZyzi5zXACig1TOm3oYUrO93qyJSYYuvPrsYNjaPvSt8ikMRd9M5x03vi7zv8pjsGC7ZGdlNDlfHOWcfjw_vi-dy-fr0srhflo5zPZaavFfStegCUuAOCbzutA9q2tqudlqRJBG4to1FcoKIrLAKrexqbISYs5vf3iHFz33Io1nHfdpNL42ARjRCtfWBuv2lXIo5p0BmSP3Wpm-DYA5izCTGHMSYScyEV0fcbrvU-1X4a_038AOHHGU3</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Rostami, Peyman</creator><creator>Fricke, Mathis</creator><creator>Schubotz, Simon</creator><creator>Patel, Himanshu</creator><creator>Azizmalayeri, Reza</creator><creator>Auernhammer, Günter K.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8659-7132</orcidid><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6281-6617</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8128</orcidid></search><sort><creationdate>20240724</creationdate><title>Spreading of a viscoelastic drop on a solid substrate</title><author>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contact angle</topic><topic>JFM Papers</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Shear viscosity</topic><topic>Spreading</topic><topic>Substrates</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Fricke, Mathis</creatorcontrib><creatorcontrib>Schubotz, Simon</creatorcontrib><creatorcontrib>Patel, Himanshu</creatorcontrib><creatorcontrib>Azizmalayeri, Reza</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostami, Peyman</au><au>Fricke, Mathis</au><au>Schubotz, Simon</au><au>Patel, Himanshu</au><au>Azizmalayeri, Reza</au><au>Auernhammer, Günter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading of a viscoelastic drop on a solid substrate</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>988</volume><artnum>A51</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.450</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8659-7132</orcidid><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6281-6617</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-07, Vol.988, Article A51
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3083835963
source Cambridge University Press
subjects Contact angle
JFM Papers
Polymers
Relaxation time
Rheology
Shear
Shear rate
Shear thinning (liquids)
Shear viscosity
Spreading
Substrates
Viscoelasticity
Viscosity
title Spreading of a viscoelastic drop on a solid substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20of%20a%20viscoelastic%20drop%20on%20a%20solid%20substrate&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rostami,%20Peyman&rft.date=2024-07-24&rft.volume=988&rft.artnum=A51&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.450&rft_dat=%3Cproquest_cross%3E3083835963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083835963&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_450&rfr_iscdi=true