Loading…
Spreading of a viscoelastic drop on a solid substrate
We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster a...
Saved in:
Published in: | Journal of fluid mechanics 2024-07, Vol.988, Article A51 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 988 |
creator | Rostami, Peyman Fricke, Mathis Schubotz, Simon Patel, Himanshu Azizmalayeri, Reza Auernhammer, Günter K. |
description | We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings. |
doi_str_mv | 10.1017/jfm.2024.450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083835963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_450</cupid><sourcerecordid>3083835963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f8CCV3edycdm9yjFLyh4UM8hm2TKlrZZk63gv3eLBS-eZhie9x14GLtGqBBQ361pW3HgspIKTtgMZd2WupbqlM0AOC8ROZyzi5zXACig1TOm3oYUrO93qyJSYYuvPrsYNjaPvSt8ikMRd9M5x03vi7zv8pjsGC7ZGdlNDlfHOWcfjw_vi-dy-fr0srhflo5zPZaavFfStegCUuAOCbzutA9q2tqudlqRJBG4to1FcoKIrLAKrexqbISYs5vf3iHFz33Io1nHfdpNL42ARjRCtfWBuv2lXIo5p0BmSP3Wpm-DYA5izCTGHMSYScyEV0fcbrvU-1X4a_038AOHHGU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083835963</pqid></control><display><type>article</type><title>Spreading of a viscoelastic drop on a solid substrate</title><source>Cambridge University Press</source><creator>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</creator><creatorcontrib>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</creatorcontrib><description>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.450</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Contact angle ; JFM Papers ; Polymers ; Relaxation time ; Rheology ; Shear ; Shear rate ; Shear thinning (liquids) ; Shear viscosity ; Spreading ; Substrates ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2024-07, Vol.988, Article A51</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</cites><orcidid>0000-0001-8659-7132 ; 0000-0003-1515-0143 ; 0000-0002-6281-6617 ; 0000-0002-1066-966X ; 0000-0002-5113-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024004506/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Fricke, Mathis</creatorcontrib><creatorcontrib>Schubotz, Simon</creatorcontrib><creatorcontrib>Patel, Himanshu</creatorcontrib><creatorcontrib>Azizmalayeri, Reza</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><title>Spreading of a viscoelastic drop on a solid substrate</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</description><subject>Contact angle</subject><subject>JFM Papers</subject><subject>Polymers</subject><subject>Relaxation time</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Shear viscosity</subject><subject>Spreading</subject><subject>Substrates</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f8CCV3edycdm9yjFLyh4UM8hm2TKlrZZk63gv3eLBS-eZhie9x14GLtGqBBQ361pW3HgspIKTtgMZd2WupbqlM0AOC8ROZyzi5zXACig1TOm3oYUrO93qyJSYYuvPrsYNjaPvSt8ikMRd9M5x03vi7zv8pjsGC7ZGdlNDlfHOWcfjw_vi-dy-fr0srhflo5zPZaavFfStegCUuAOCbzutA9q2tqudlqRJBG4to1FcoKIrLAKrexqbISYs5vf3iHFz33Io1nHfdpNL42ARjRCtfWBuv2lXIo5p0BmSP3Wpm-DYA5izCTGHMSYScyEV0fcbrvU-1X4a_038AOHHGU3</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Rostami, Peyman</creator><creator>Fricke, Mathis</creator><creator>Schubotz, Simon</creator><creator>Patel, Himanshu</creator><creator>Azizmalayeri, Reza</creator><creator>Auernhammer, Günter K.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8659-7132</orcidid><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6281-6617</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8128</orcidid></search><sort><creationdate>20240724</creationdate><title>Spreading of a viscoelastic drop on a solid substrate</title><author>Rostami, Peyman ; Fricke, Mathis ; Schubotz, Simon ; Patel, Himanshu ; Azizmalayeri, Reza ; Auernhammer, Günter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contact angle</topic><topic>JFM Papers</topic><topic>Polymers</topic><topic>Relaxation time</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Shear viscosity</topic><topic>Spreading</topic><topic>Substrates</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostami, Peyman</creatorcontrib><creatorcontrib>Fricke, Mathis</creatorcontrib><creatorcontrib>Schubotz, Simon</creatorcontrib><creatorcontrib>Patel, Himanshu</creatorcontrib><creatorcontrib>Azizmalayeri, Reza</creatorcontrib><creatorcontrib>Auernhammer, Günter K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostami, Peyman</au><au>Fricke, Mathis</au><au>Schubotz, Simon</au><au>Patel, Himanshu</au><au>Azizmalayeri, Reza</au><au>Auernhammer, Günter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading of a viscoelastic drop on a solid substrate</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-07-24</date><risdate>2024</risdate><volume>988</volume><artnum>A51</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the spreading of Newtonian viscous (aqueous glycerin solution) and viscoelastic (aqueous polymer solution) drops on solid substrates with different wettabilities. For drops of the same zero-shear viscosity, we find in the early stages of spreading that viscoelastic drops (i) spread faster and (ii) their contact radius shows a different power law vs time than Newtonian drops. We argue that the effect of viscoelasticity is only observable for experimental time scales of the order of or larger than the internal relaxation time of the viscoelastic polymer solution. We attribute this behaviour to the shear thinning of the viscoelastic polymer solution. When approaching the contact line, the shear rate increases and the steady-state viscosity of the viscoelastic drop is lower than that of the Newtonian drop. We support our experimental findings with a simple (first-order) perturbation model that qualitatively agrees with our findings.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.450</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8659-7132</orcidid><orcidid>https://orcid.org/0000-0003-1515-0143</orcidid><orcidid>https://orcid.org/0000-0002-6281-6617</orcidid><orcidid>https://orcid.org/0000-0002-1066-966X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-07, Vol.988, Article A51 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3083835963 |
source | Cambridge University Press |
subjects | Contact angle JFM Papers Polymers Relaxation time Rheology Shear Shear rate Shear thinning (liquids) Shear viscosity Spreading Substrates Viscoelasticity Viscosity |
title | Spreading of a viscoelastic drop on a solid substrate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20of%20a%20viscoelastic%20drop%20on%20a%20solid%20substrate&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rostami,%20Peyman&rft.date=2024-07-24&rft.volume=988&rft.artnum=A51&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.450&rft_dat=%3Cproquest_cross%3E3083835963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-7fdd54c91ce1fe2c1f0d7b7de51f09b6c75f4f3e27a8a1fc3fffa3a51a4b61833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3083835963&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_450&rfr_iscdi=true |