Loading…
On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)
We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2401.07195 |