Loading…

On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)

We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-01
Main Author: Dinh Tuan Huynh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).
ISSN:2331-8422
DOI:10.48550/arxiv.2401.07195