Loading…
On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)
We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dinh Tuan Huynh |
description | We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\). |
doi_str_mv | 10.48550/arxiv.2401.07195 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084085493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084085493</sourcerecordid><originalsourceid>FETCH-proquest_journals_30840854933</originalsourceid><addsrcrecordid>eNqNyssKgkAUgOEhCJLyAdodaFOL7DiXtG3RZRdES0mmGMlwRvNoBNG716IHaPUvvp-xYYiBjJXCma6f-SPgEsMAo3ChOszjQoTTWHLeYz7RDRH5POJKCY8t9w6aq4GtbonA6oqgzOBS2qowjQGbu9zqAqitM30xBLmDZJxY3VzP59fhfXLJZMC6mS7I-L_22WizPq5206ou762hJr2Vbe2-lAqMJcZKLoT47_oAQsQ_Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084085493</pqid></control><display><type>article</type><title>On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)</title><source>Publicly Available Content Database</source><creator>Dinh Tuan Huynh</creator><creatorcontrib>Dinh Tuan Huynh</creatorcontrib><description>We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2401.07195</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hyperspaces ; Minimal surfaces</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3084085493?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Dinh Tuan Huynh</creatorcontrib><title>On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)</title><title>arXiv.org</title><description>We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).</description><subject>Hyperspaces</subject><subject>Minimal surfaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyssKgkAUgOEhCJLyAdodaFOL7DiXtG3RZRdES0mmGMlwRvNoBNG716IHaPUvvp-xYYiBjJXCma6f-SPgEsMAo3ChOszjQoTTWHLeYz7RDRH5POJKCY8t9w6aq4GtbonA6oqgzOBS2qowjQGbu9zqAqitM30xBLmDZJxY3VzP59fhfXLJZMC6mS7I-L_22WizPq5206ou762hJr2Vbe2-lAqMJcZKLoT47_oAQsQ_Ug</recordid><startdate>20240114</startdate><enddate>20240114</enddate><creator>Dinh Tuan Huynh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240114</creationdate><title>On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)</title><author>Dinh Tuan Huynh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30840854933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hyperspaces</topic><topic>Minimal surfaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinh Tuan Huynh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh Tuan Huynh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\)</atitle><jtitle>arXiv.org</jtitle><date>2024-01-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove that the Gauss map of a non-flat complete minimal surface immersed in \(\mathbb{R}^n\) can omit a generic hypersurface \(D\) of degree at most \( n^{n+2}(n+1)^{n+2}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2401.07195</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3084085493 |
source | Publicly Available Content Database |
subjects | Hyperspaces Minimal surfaces |
title | On the Gauss maps of complete minimal surfaces in \(\mathbb{R}^n\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Gauss%20maps%20of%20complete%20minimal%20surfaces%20in%20%5C(%5Cmathbb%7BR%7D%5En%5C)&rft.jtitle=arXiv.org&rft.au=Dinh%20Tuan%20Huynh&rft.date=2024-01-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2401.07195&rft_dat=%3Cproquest%3E3084085493%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30840854933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084085493&rft_id=info:pmid/&rfr_iscdi=true |