Loading…

Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties

We present our optical observations and multi-wavelength analysis of the GRB\,200613A detected by \texttt{Fermi} satellite. Time-resolved spectral analysis of the prompt \(\gamma\)-ray emission was conducted utilizing the Bayesian block method to determine statistically optimal time bins. Based on t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Shao-Yu, Fu, Xu, Dong, Wei-Hua, Lei, Antonio de Ugarte Postigo, Kann, D Alexander, Thöne, Christina C, José Feliciano Agüí Fernández, Shuang-Xi, Yi, Xie, Wei, Zou, Yuan-Chuan, Liu, Xing, Shuai-Qing Jiang, Tian-Hua, Lu, An, Jie, Zi-Pei Zhu, Zheng, Jie, Qing-Wen Tang, Peng-Wei, Zhao, Li-Ping, Xin, Jian-Yan, Wei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shao-Yu, Fu
Xu, Dong
Wei-Hua, Lei
Antonio de Ugarte Postigo
Kann, D Alexander
Thöne, Christina C
José Feliciano Agüí Fernández
Shuang-Xi, Yi
Xie, Wei
Zou, Yuan-Chuan
Liu, Xing
Shuai-Qing Jiang
Tian-Hua, Lu
An, Jie
Zi-Pei Zhu
Zheng, Jie
Qing-Wen Tang
Peng-Wei, Zhao
Li-Ping, Xin
Jian-Yan, Wei
description We present our optical observations and multi-wavelength analysis of the GRB\,200613A detected by \texttt{Fermi} satellite. Time-resolved spectral analysis of the prompt \(\gamma\)-ray emission was conducted utilizing the Bayesian block method to determine statistically optimal time bins. Based on the Bayesian Information Criterion (BIC), the data generally favor the Band+Blackbody (short as BB) model. We speculate that the main Band component comes from the Blandford-Znajek mechanism, while the additional BB component comes from the neutrino annihilation process. The BB component becomes significant for a low-spin, high-accretion rate black hole central engine, as evidenced by our model comparison with the data. The afterglow light curve exhibits typical power-law decay, and its behavior can be explained by the collision between the ejecta and constant interstellar medium (ISM). Model fitting yields the following parameters: \(E_{K,iso} = (2.04^{+11.8}_{-1.50})\times 10^{53}\) erg, \(\Gamma_0=354^{+578}_{-217}\), \(p=2.09^{+0.02}_{-0.03}\), \(n_{18}=(2.04^{+9.71}_{-1.87})\times 10^{2}\) cm\(^{-3}\), \(\theta_j=24.0^{+6.50}_{-5.54}\) degree, \(\epsilon_e=1.66^{+4.09}_{-1.39})\times 10^{-1}\) and \(\epsilon_B=(7.76^{+48.5}_{-5.9})\times 10^{-6}\). In addition, we employed the public Python package \texttt{Prospector} perform a spectral energy distribution (SED) modeling of the host galaxy. The results suggest that the host galaxy is a massive galaxy (\(\log(M_\ast / M_\odot)=11.75^{+0.10}_{-0.09}\)) with moderate star formation rate (\(\mbox{SFR}=22.58^{+13.63}_{-7.22} M_{\odot}\)/yr). This SFR is consistent with the SFR of \(\sim 34.2 M_{\odot}\) yr\(^{-1}\) derived from the [OII] emission line in the observed spectrum.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084093414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084093414</sourcerecordid><originalsourceid>FETCH-proquest_journals_30840934143</originalsourceid><addsrcrecordid>eNqNjMtqwkAUQIeCUKn-w4UuulGYzMQ07U5r1E2hFF3LYG7SkclMnHvj4--r0g_o6izO4TyIvtI6GeepUo9iSLSXUqrsVU0mui9OG39E66yvgX8QPjvHtjI7ZCxh-T0DJWWW6Ok7fMXQtAxFY4ls8DC_eNPYHY1gWjHG2oUTFMfgOr7aERhf3oerQAxL48z58kK3SYuRLdJA9CrjCId_fBLPi2L9sRq3MRw6JN7uQxf9VW21zFP5ptMk1f-rfgHDpEtX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084093414</pqid></control><display><type>article</type><title>Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties</title><source>Publicly Available Content Database</source><creator>Shao-Yu, Fu ; Xu, Dong ; Wei-Hua, Lei ; Antonio de Ugarte Postigo ; Kann, D Alexander ; Thöne, Christina C ; José Feliciano Agüí Fernández ; Shuang-Xi, Yi ; Xie, Wei ; Zou, Yuan-Chuan ; Liu, Xing ; Shuai-Qing Jiang ; Tian-Hua, Lu ; An, Jie ; Zi-Pei Zhu ; Zheng, Jie ; Qing-Wen Tang ; Peng-Wei, Zhao ; Li-Ping, Xin ; Jian-Yan, Wei</creator><creatorcontrib>Shao-Yu, Fu ; Xu, Dong ; Wei-Hua, Lei ; Antonio de Ugarte Postigo ; Kann, D Alexander ; Thöne, Christina C ; José Feliciano Agüí Fernández ; Shuang-Xi, Yi ; Xie, Wei ; Zou, Yuan-Chuan ; Liu, Xing ; Shuai-Qing Jiang ; Tian-Hua, Lu ; An, Jie ; Zi-Pei Zhu ; Zheng, Jie ; Qing-Wen Tang ; Peng-Wei, Zhao ; Li-Ping, Xin ; Jian-Yan, Wei</creatorcontrib><description>We present our optical observations and multi-wavelength analysis of the GRB\,200613A detected by \texttt{Fermi} satellite. Time-resolved spectral analysis of the prompt \(\gamma\)-ray emission was conducted utilizing the Bayesian block method to determine statistically optimal time bins. Based on the Bayesian Information Criterion (BIC), the data generally favor the Band+Blackbody (short as BB) model. We speculate that the main Band component comes from the Blandford-Znajek mechanism, while the additional BB component comes from the neutrino annihilation process. The BB component becomes significant for a low-spin, high-accretion rate black hole central engine, as evidenced by our model comparison with the data. The afterglow light curve exhibits typical power-law decay, and its behavior can be explained by the collision between the ejecta and constant interstellar medium (ISM). Model fitting yields the following parameters: \(E_{K,iso} = (2.04^{+11.8}_{-1.50})\times 10^{53}\) erg, \(\Gamma_0=354^{+578}_{-217}\), \(p=2.09^{+0.02}_{-0.03}\), \(n_{18}=(2.04^{+9.71}_{-1.87})\times 10^{2}\) cm\(^{-3}\), \(\theta_j=24.0^{+6.50}_{-5.54}\) degree, \(\epsilon_e=1.66^{+4.09}_{-1.39})\times 10^{-1}\) and \(\epsilon_B=(7.76^{+48.5}_{-5.9})\times 10^{-6}\). In addition, we employed the public Python package \texttt{Prospector} perform a spectral energy distribution (SED) modeling of the host galaxy. The results suggest that the host galaxy is a massive galaxy (\(\log(M_\ast / M_\odot)=11.75^{+0.10}_{-0.09}\)) with moderate star formation rate (\(\mbox{SFR}=22.58^{+13.63}_{-7.22} M_{\odot}\)/yr). This SFR is consistent with the SFR of \(\sim 34.2 M_{\odot}\) yr\(^{-1}\) derived from the [OII] emission line in the observed spectrum.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Afterglows ; Astronomical models ; Bayesian analysis ; Blackbody ; Ejecta ; Emission ; Galactic evolution ; Galaxy distribution ; Gamma ray bursts ; Interstellar matter ; Light curve ; Neutrinos ; Optical properties ; Spectral energy distribution ; Spectrum analysis ; Star &amp; galaxy formation ; Star formation rate</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3084093414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Shao-Yu, Fu</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Wei-Hua, Lei</creatorcontrib><creatorcontrib>Antonio de Ugarte Postigo</creatorcontrib><creatorcontrib>Kann, D Alexander</creatorcontrib><creatorcontrib>Thöne, Christina C</creatorcontrib><creatorcontrib>José Feliciano Agüí Fernández</creatorcontrib><creatorcontrib>Shuang-Xi, Yi</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Zou, Yuan-Chuan</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Shuai-Qing Jiang</creatorcontrib><creatorcontrib>Tian-Hua, Lu</creatorcontrib><creatorcontrib>An, Jie</creatorcontrib><creatorcontrib>Zi-Pei Zhu</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Qing-Wen Tang</creatorcontrib><creatorcontrib>Peng-Wei, Zhao</creatorcontrib><creatorcontrib>Li-Ping, Xin</creatorcontrib><creatorcontrib>Jian-Yan, Wei</creatorcontrib><title>Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties</title><title>arXiv.org</title><description>We present our optical observations and multi-wavelength analysis of the GRB\,200613A detected by \texttt{Fermi} satellite. Time-resolved spectral analysis of the prompt \(\gamma\)-ray emission was conducted utilizing the Bayesian block method to determine statistically optimal time bins. Based on the Bayesian Information Criterion (BIC), the data generally favor the Band+Blackbody (short as BB) model. We speculate that the main Band component comes from the Blandford-Znajek mechanism, while the additional BB component comes from the neutrino annihilation process. The BB component becomes significant for a low-spin, high-accretion rate black hole central engine, as evidenced by our model comparison with the data. The afterglow light curve exhibits typical power-law decay, and its behavior can be explained by the collision between the ejecta and constant interstellar medium (ISM). Model fitting yields the following parameters: \(E_{K,iso} = (2.04^{+11.8}_{-1.50})\times 10^{53}\) erg, \(\Gamma_0=354^{+578}_{-217}\), \(p=2.09^{+0.02}_{-0.03}\), \(n_{18}=(2.04^{+9.71}_{-1.87})\times 10^{2}\) cm\(^{-3}\), \(\theta_j=24.0^{+6.50}_{-5.54}\) degree, \(\epsilon_e=1.66^{+4.09}_{-1.39})\times 10^{-1}\) and \(\epsilon_B=(7.76^{+48.5}_{-5.9})\times 10^{-6}\). In addition, we employed the public Python package \texttt{Prospector} perform a spectral energy distribution (SED) modeling of the host galaxy. The results suggest that the host galaxy is a massive galaxy (\(\log(M_\ast / M_\odot)=11.75^{+0.10}_{-0.09}\)) with moderate star formation rate (\(\mbox{SFR}=22.58^{+13.63}_{-7.22} M_{\odot}\)/yr). This SFR is consistent with the SFR of \(\sim 34.2 M_{\odot}\) yr\(^{-1}\) derived from the [OII] emission line in the observed spectrum.</description><subject>Afterglows</subject><subject>Astronomical models</subject><subject>Bayesian analysis</subject><subject>Blackbody</subject><subject>Ejecta</subject><subject>Emission</subject><subject>Galactic evolution</subject><subject>Galaxy distribution</subject><subject>Gamma ray bursts</subject><subject>Interstellar matter</subject><subject>Light curve</subject><subject>Neutrinos</subject><subject>Optical properties</subject><subject>Spectral energy distribution</subject><subject>Spectrum analysis</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation rate</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMtqwkAUQIeCUKn-w4UuulGYzMQ07U5r1E2hFF3LYG7SkclMnHvj4--r0g_o6izO4TyIvtI6GeepUo9iSLSXUqrsVU0mui9OG39E66yvgX8QPjvHtjI7ZCxh-T0DJWWW6Ok7fMXQtAxFY4ls8DC_eNPYHY1gWjHG2oUTFMfgOr7aERhf3oerQAxL48z58kK3SYuRLdJA9CrjCId_fBLPi2L9sRq3MRw6JN7uQxf9VW21zFP5ptMk1f-rfgHDpEtX</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Shao-Yu, Fu</creator><creator>Xu, Dong</creator><creator>Wei-Hua, Lei</creator><creator>Antonio de Ugarte Postigo</creator><creator>Kann, D Alexander</creator><creator>Thöne, Christina C</creator><creator>José Feliciano Agüí Fernández</creator><creator>Shuang-Xi, Yi</creator><creator>Xie, Wei</creator><creator>Zou, Yuan-Chuan</creator><creator>Liu, Xing</creator><creator>Shuai-Qing Jiang</creator><creator>Tian-Hua, Lu</creator><creator>An, Jie</creator><creator>Zi-Pei Zhu</creator><creator>Zheng, Jie</creator><creator>Qing-Wen Tang</creator><creator>Peng-Wei, Zhao</creator><creator>Li-Ping, Xin</creator><creator>Jian-Yan, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties</title><author>Shao-Yu, Fu ; Xu, Dong ; Wei-Hua, Lei ; Antonio de Ugarte Postigo ; Kann, D Alexander ; Thöne, Christina C ; José Feliciano Agüí Fernández ; Shuang-Xi, Yi ; Xie, Wei ; Zou, Yuan-Chuan ; Liu, Xing ; Shuai-Qing Jiang ; Tian-Hua, Lu ; An, Jie ; Zi-Pei Zhu ; Zheng, Jie ; Qing-Wen Tang ; Peng-Wei, Zhao ; Li-Ping, Xin ; Jian-Yan, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30840934143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Afterglows</topic><topic>Astronomical models</topic><topic>Bayesian analysis</topic><topic>Blackbody</topic><topic>Ejecta</topic><topic>Emission</topic><topic>Galactic evolution</topic><topic>Galaxy distribution</topic><topic>Gamma ray bursts</topic><topic>Interstellar matter</topic><topic>Light curve</topic><topic>Neutrinos</topic><topic>Optical properties</topic><topic>Spectral energy distribution</topic><topic>Spectrum analysis</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation rate</topic><toplevel>online_resources</toplevel><creatorcontrib>Shao-Yu, Fu</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Wei-Hua, Lei</creatorcontrib><creatorcontrib>Antonio de Ugarte Postigo</creatorcontrib><creatorcontrib>Kann, D Alexander</creatorcontrib><creatorcontrib>Thöne, Christina C</creatorcontrib><creatorcontrib>José Feliciano Agüí Fernández</creatorcontrib><creatorcontrib>Shuang-Xi, Yi</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Zou, Yuan-Chuan</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Shuai-Qing Jiang</creatorcontrib><creatorcontrib>Tian-Hua, Lu</creatorcontrib><creatorcontrib>An, Jie</creatorcontrib><creatorcontrib>Zi-Pei Zhu</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Qing-Wen Tang</creatorcontrib><creatorcontrib>Peng-Wei, Zhao</creatorcontrib><creatorcontrib>Li-Ping, Xin</creatorcontrib><creatorcontrib>Jian-Yan, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao-Yu, Fu</au><au>Xu, Dong</au><au>Wei-Hua, Lei</au><au>Antonio de Ugarte Postigo</au><au>Kann, D Alexander</au><au>Thöne, Christina C</au><au>José Feliciano Agüí Fernández</au><au>Shuang-Xi, Yi</au><au>Xie, Wei</au><au>Zou, Yuan-Chuan</au><au>Liu, Xing</au><au>Shuai-Qing Jiang</au><au>Tian-Hua, Lu</au><au>An, Jie</au><au>Zi-Pei Zhu</au><au>Zheng, Jie</au><au>Qing-Wen Tang</au><au>Peng-Wei, Zhao</au><au>Li-Ping, Xin</au><au>Jian-Yan, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present our optical observations and multi-wavelength analysis of the GRB\,200613A detected by \texttt{Fermi} satellite. Time-resolved spectral analysis of the prompt \(\gamma\)-ray emission was conducted utilizing the Bayesian block method to determine statistically optimal time bins. Based on the Bayesian Information Criterion (BIC), the data generally favor the Band+Blackbody (short as BB) model. We speculate that the main Band component comes from the Blandford-Znajek mechanism, while the additional BB component comes from the neutrino annihilation process. The BB component becomes significant for a low-spin, high-accretion rate black hole central engine, as evidenced by our model comparison with the data. The afterglow light curve exhibits typical power-law decay, and its behavior can be explained by the collision between the ejecta and constant interstellar medium (ISM). Model fitting yields the following parameters: \(E_{K,iso} = (2.04^{+11.8}_{-1.50})\times 10^{53}\) erg, \(\Gamma_0=354^{+578}_{-217}\), \(p=2.09^{+0.02}_{-0.03}\), \(n_{18}=(2.04^{+9.71}_{-1.87})\times 10^{2}\) cm\(^{-3}\), \(\theta_j=24.0^{+6.50}_{-5.54}\) degree, \(\epsilon_e=1.66^{+4.09}_{-1.39})\times 10^{-1}\) and \(\epsilon_B=(7.76^{+48.5}_{-5.9})\times 10^{-6}\). In addition, we employed the public Python package \texttt{Prospector} perform a spectral energy distribution (SED) modeling of the host galaxy. The results suggest that the host galaxy is a massive galaxy (\(\log(M_\ast / M_\odot)=11.75^{+0.10}_{-0.09}\)) with moderate star formation rate (\(\mbox{SFR}=22.58^{+13.63}_{-7.22} M_{\odot}\)/yr). This SFR is consistent with the SFR of \(\sim 34.2 M_{\odot}\) yr\(^{-1}\) derived from the [OII] emission line in the observed spectrum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3084093414
source Publicly Available Content Database
subjects Afterglows
Astronomical models
Bayesian analysis
Blackbody
Ejecta
Emission
Galactic evolution
Galaxy distribution
Gamma ray bursts
Interstellar matter
Light curve
Neutrinos
Optical properties
Spectral energy distribution
Spectrum analysis
Star & galaxy formation
Star formation rate
title Unveiling the Multifaceted GRB 200613A: Prompt Emission Dynamics, Afterglow Evolution, and the Host Galaxy's Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unveiling%20the%20Multifaceted%20GRB%20200613A:%20Prompt%20Emission%20Dynamics,%20Afterglow%20Evolution,%20and%20the%20Host%20Galaxy's%20Properties&rft.jtitle=arXiv.org&rft.au=Shao-Yu,%20Fu&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084093414%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30840934143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084093414&rft_id=info:pmid/&rfr_iscdi=true