Loading…
Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates
The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interes...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ghosh, Alekhya Pal, Arghadeep Zhang, Shuangyou Hill, Lewis Bi, Toby Del'Haye, Pascal |
description | The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084093700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084093700</sourcerecordid><originalsourceid>FETCH-proquest_journals_30840937003</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgKOo_DLgWYuJza_GxUBDqXkKdtvGRqTMp4t9bwQ9wdeGcw22prrF2PFpMjOmogchVa21mczOd2q7KjqUThPT9eGDkN6wY3c2HAiiHhOoQkSumyhUufuneF2UEH-DgMyZGoeAisUBODOnLx6xEARcusKfCZ7B1EaWv2rm7Cw5-21PDzfqU7EbN87NGiecr1RwadbZ6MdFLO9fa_ld9AAaYRjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084093700</pqid></control><display><type>article</type><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><source>Publicly Available Content Database</source><creator>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Logic circuits ; Nonlinear response ; Optical data processing ; Optical switching ; Photonics ; Resonators ; Switches ; Threshold gates</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3084093700?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Hill, Lewis</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><title>arXiv.org</title><description>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</description><subject>Broken symmetry</subject><subject>Logic circuits</subject><subject>Nonlinear response</subject><subject>Optical data processing</subject><subject>Optical switching</subject><subject>Photonics</subject><subject>Resonators</subject><subject>Switches</subject><subject>Threshold gates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAQRYMgKOo_DLgWYuJza_GxUBDqXkKdtvGRqTMp4t9bwQ9wdeGcw22prrF2PFpMjOmogchVa21mczOd2q7KjqUThPT9eGDkN6wY3c2HAiiHhOoQkSumyhUufuneF2UEH-DgMyZGoeAisUBODOnLx6xEARcusKfCZ7B1EaWv2rm7Cw5-21PDzfqU7EbN87NGiecr1RwadbZ6MdFLO9fa_ld9AAaYRjo</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Ghosh, Alekhya</creator><creator>Pal, Arghadeep</creator><creator>Zhang, Shuangyou</creator><creator>Hill, Lewis</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><author>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30840937003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broken symmetry</topic><topic>Logic circuits</topic><topic>Nonlinear response</topic><topic>Optical data processing</topic><topic>Optical switching</topic><topic>Photonics</topic><topic>Resonators</topic><topic>Switches</topic><topic>Threshold gates</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Hill, Lewis</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Alekhya</au><au>Pal, Arghadeep</au><au>Zhang, Shuangyou</au><au>Hill, Lewis</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3084093700 |
source | Publicly Available Content Database |
subjects | Broken symmetry Logic circuits Nonlinear response Optical data processing Optical switching Photonics Resonators Switches Threshold gates |
title | Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Phase%20Symmetry%20Breaking%20of%20Counterpropagating%20Light%20in%20Microresonators%20for%20Switches%20and%20Logic%20Gates&rft.jtitle=arXiv.org&rft.au=Ghosh,%20Alekhya&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084093700%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30840937003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084093700&rft_id=info:pmid/&rfr_iscdi=true |