Loading…

Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates

The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interes...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Ghosh, Alekhya, Pal, Arghadeep, Zhang, Shuangyou, Hill, Lewis, Bi, Toby, Del'Haye, Pascal
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ghosh, Alekhya
Pal, Arghadeep
Zhang, Shuangyou
Hill, Lewis
Bi, Toby
Del'Haye, Pascal
description The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3084093700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084093700</sourcerecordid><originalsourceid>FETCH-proquest_journals_30840937003</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgKOo_DLgWYuJza_GxUBDqXkKdtvGRqTMp4t9bwQ9wdeGcw22prrF2PFpMjOmogchVa21mczOd2q7KjqUThPT9eGDkN6wY3c2HAiiHhOoQkSumyhUufuneF2UEH-DgMyZGoeAisUBODOnLx6xEARcusKfCZ7B1EaWv2rm7Cw5-21PDzfqU7EbN87NGiecr1RwadbZ6MdFLO9fa_ld9AAaYRjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084093700</pqid></control><display><type>article</type><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><source>Publicly Available Content Database</source><creator>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Logic circuits ; Nonlinear response ; Optical data processing ; Optical switching ; Photonics ; Resonators ; Switches ; Threshold gates</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3084093700?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Hill, Lewis</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><title>arXiv.org</title><description>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</description><subject>Broken symmetry</subject><subject>Logic circuits</subject><subject>Nonlinear response</subject><subject>Optical data processing</subject><subject>Optical switching</subject><subject>Photonics</subject><subject>Resonators</subject><subject>Switches</subject><subject>Threshold gates</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAQRYMgKOo_DLgWYuJza_GxUBDqXkKdtvGRqTMp4t9bwQ9wdeGcw22prrF2PFpMjOmogchVa21mczOd2q7KjqUThPT9eGDkN6wY3c2HAiiHhOoQkSumyhUufuneF2UEH-DgMyZGoeAisUBODOnLx6xEARcusKfCZ7B1EaWv2rm7Cw5-21PDzfqU7EbN87NGiecr1RwadbZ6MdFLO9fa_ld9AAaYRjo</recordid><startdate>20240723</startdate><enddate>20240723</enddate><creator>Ghosh, Alekhya</creator><creator>Pal, Arghadeep</creator><creator>Zhang, Shuangyou</creator><creator>Hill, Lewis</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240723</creationdate><title>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</title><author>Ghosh, Alekhya ; Pal, Arghadeep ; Zhang, Shuangyou ; Hill, Lewis ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30840937003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broken symmetry</topic><topic>Logic circuits</topic><topic>Nonlinear response</topic><topic>Optical data processing</topic><topic>Optical switching</topic><topic>Photonics</topic><topic>Resonators</topic><topic>Switches</topic><topic>Threshold gates</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Hill, Lewis</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Alekhya</au><au>Pal, Arghadeep</au><au>Zhang, Shuangyou</au><au>Hill, Lewis</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates</atitle><jtitle>arXiv.org</jtitle><date>2024-07-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The rapidly growing field of integrated photonics is enabling a large number of novel devices for optical data processing, neuromorphic computing and circuits for quantum photonics. While many photonic devices are based on linear optics, nonlinear responses at low threshold power are of high interest for optical switching and computing. In the case of counterpropagating light, nonlinear interactions can be utilized for chip-based isolators and logic gates. In our work we find a symmetry breaking of the phases of counterpropagating light waves in high-Q ring resonators. This abrupt change in the phases can be used for optical switches and logic gates. In addition to our experimental results, we provide theoretical models that describe the phase symmetry breaking of counterpropagating light in ring resonators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3084093700
source Publicly Available Content Database
subjects Broken symmetry
Logic circuits
Nonlinear response
Optical data processing
Optical switching
Photonics
Resonators
Switches
Threshold gates
title Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Phase%20Symmetry%20Breaking%20of%20Counterpropagating%20Light%20in%20Microresonators%20for%20Switches%20and%20Logic%20Gates&rft.jtitle=arXiv.org&rft.au=Ghosh,%20Alekhya&rft.date=2024-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3084093700%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30840937003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084093700&rft_id=info:pmid/&rfr_iscdi=true