Loading…
Detonation wave reflection over a concave–convex cylindrical wedge
The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil tec...
Saved in:
Published in: | Shock waves 2024-06, Vol.34 (3), p.285-289 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-641f23806f30acb69a367d56a37f47c425000a1f75a92ca7cf292fd3a95623623 |
container_end_page | 289 |
container_issue | 3 |
container_start_page | 285 |
container_title | Shock waves |
container_volume | 34 |
creator | Wang, L. Q. Ma, H. H. |
description | The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil technique, from which the transition angles for
MR
↔
RR
transitions could be determined. Similar to the reflection of a non-reacting shock wave, the non-stationary hysteresis phenomenon was found for detonation reflection, i.e., the
MR
→
RR
transition angle was much larger than that for
RR
→
MR
transition. In addition, the
RR
→
MR
transition angle on the convex surface was smaller than that for detonation reflection over a single half-cylinder. This is opposite to what is found for non-reacting shock wave reflection. |
doi_str_mv | 10.1007/s00193-024-01176-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084373275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084373275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-641f23806f30acb69a367d56a37f47c425000a1f75a92ca7cf292fd3a95623623</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwApwqcQ44cZu0R7TxT5rEBc5RSJOpU2lG0nXsxjvwhjwJYUXihmTJtvx9tvwj5JzBJQOQVxGAVUiB5xQYk4LiAZmwHDnlrMBDMoEKS8p4KY_JSYyrJJdCygmZz23vO903vsu2erBZsK61Zt_7wYZMZ8Z3Jk2-Pj5TNdj3zOzapqtDY3SbbW29tKfkyOk22rPfPCXPtzdPs3u6eLx7mF0vqOEAPRU5cxxLEA5BmxdRaRSyLoRG6XJpcl4AgGZOFrriRkvjeMVdjboqBMcUU3Ix7l0H_7axsVcrvwldOqkQyhwlclkkFR9VJvgY0z9qHZpXHXaKgfqhpUZaKtFSe1oKkwlHU0zibmnD3-p_XN-zmmzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084373275</pqid></control><display><type>article</type><title>Detonation wave reflection over a concave–convex cylindrical wedge</title><source>Springer Nature</source><creator>Wang, L. Q. ; Ma, H. H.</creator><creatorcontrib>Wang, L. Q. ; Ma, H. H.</creatorcontrib><description>The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil technique, from which the transition angles for
MR
↔
RR
transitions could be determined. Similar to the reflection of a non-reacting shock wave, the non-stationary hysteresis phenomenon was found for detonation reflection, i.e., the
MR
→
RR
transition angle was much larger than that for
RR
→
MR
transition. In addition, the
RR
→
MR
transition angle on the convex surface was smaller than that for detonation reflection over a single half-cylinder. This is opposite to what is found for non-reacting shock wave reflection.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-024-01176-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Angle of reflection ; Argon ; Condensed Matter Physics ; Cylindrical waves ; Detonation waves ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Mach reflection ; Shock wave reflection ; Technical Note ; Thermodynamics</subject><ispartof>Shock waves, 2024-06, Vol.34 (3), p.285-289</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-641f23806f30acb69a367d56a37f47c425000a1f75a92ca7cf292fd3a95623623</cites><orcidid>0000-0003-4567-2831 ; 0000-0003-3880-6459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, L. Q.</creatorcontrib><creatorcontrib>Ma, H. H.</creatorcontrib><title>Detonation wave reflection over a concave–convex cylindrical wedge</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil technique, from which the transition angles for
MR
↔
RR
transitions could be determined. Similar to the reflection of a non-reacting shock wave, the non-stationary hysteresis phenomenon was found for detonation reflection, i.e., the
MR
→
RR
transition angle was much larger than that for
RR
→
MR
transition. In addition, the
RR
→
MR
transition angle on the convex surface was smaller than that for detonation reflection over a single half-cylinder. This is opposite to what is found for non-reacting shock wave reflection.</description><subject>Acoustics</subject><subject>Angle of reflection</subject><subject>Argon</subject><subject>Condensed Matter Physics</subject><subject>Cylindrical waves</subject><subject>Detonation waves</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mach reflection</subject><subject>Shock wave reflection</subject><subject>Technical Note</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwApwqcQ44cZu0R7TxT5rEBc5RSJOpU2lG0nXsxjvwhjwJYUXihmTJtvx9tvwj5JzBJQOQVxGAVUiB5xQYk4LiAZmwHDnlrMBDMoEKS8p4KY_JSYyrJJdCygmZz23vO903vsu2erBZsK61Zt_7wYZMZ8Z3Jk2-Pj5TNdj3zOzapqtDY3SbbW29tKfkyOk22rPfPCXPtzdPs3u6eLx7mF0vqOEAPRU5cxxLEA5BmxdRaRSyLoRG6XJpcl4AgGZOFrriRkvjeMVdjboqBMcUU3Ix7l0H_7axsVcrvwldOqkQyhwlclkkFR9VJvgY0z9qHZpXHXaKgfqhpUZaKtFSe1oKkwlHU0zibmnD3-p_XN-zmmzt</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, L. Q.</creator><creator>Ma, H. H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4567-2831</orcidid><orcidid>https://orcid.org/0000-0003-3880-6459</orcidid></search><sort><creationdate>20240601</creationdate><title>Detonation wave reflection over a concave–convex cylindrical wedge</title><author>Wang, L. Q. ; Ma, H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-641f23806f30acb69a367d56a37f47c425000a1f75a92ca7cf292fd3a95623623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Angle of reflection</topic><topic>Argon</topic><topic>Condensed Matter Physics</topic><topic>Cylindrical waves</topic><topic>Detonation waves</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mach reflection</topic><topic>Shock wave reflection</topic><topic>Technical Note</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L. Q.</creatorcontrib><creatorcontrib>Ma, H. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L. Q.</au><au>Ma, H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detonation wave reflection over a concave–convex cylindrical wedge</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>285</spage><epage>289</epage><pages>285-289</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>The transition between Mach reflection (MR) and regular reflection (RR) of gaseous detonations in argon-diluted stoichiometric hydrogen–oxygen was investigated experimentally using a wedge with a concave–convex surface. The continuous MR triple-point trajectory was recorded using the smoked foil technique, from which the transition angles for
MR
↔
RR
transitions could be determined. Similar to the reflection of a non-reacting shock wave, the non-stationary hysteresis phenomenon was found for detonation reflection, i.e., the
MR
→
RR
transition angle was much larger than that for
RR
→
MR
transition. In addition, the
RR
→
MR
transition angle on the convex surface was smaller than that for detonation reflection over a single half-cylinder. This is opposite to what is found for non-reacting shock wave reflection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-024-01176-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4567-2831</orcidid><orcidid>https://orcid.org/0000-0003-3880-6459</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1287 |
ispartof | Shock waves, 2024-06, Vol.34 (3), p.285-289 |
issn | 0938-1287 1432-2153 |
language | eng |
recordid | cdi_proquest_journals_3084373275 |
source | Springer Nature |
subjects | Acoustics Angle of reflection Argon Condensed Matter Physics Cylindrical waves Detonation waves Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid- and Aerodynamics Heat and Mass Transfer Mach reflection Shock wave reflection Technical Note Thermodynamics |
title | Detonation wave reflection over a concave–convex cylindrical wedge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detonation%20wave%20reflection%20over%20a%20concave%E2%80%93convex%20cylindrical%20wedge&rft.jtitle=Shock%20waves&rft.au=Wang,%20L.%20Q.&rft.date=2024-06-01&rft.volume=34&rft.issue=3&rft.spage=285&rft.epage=289&rft.pages=285-289&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-024-01176-3&rft_dat=%3Cproquest_cross%3E3084373275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-641f23806f30acb69a367d56a37f47c425000a1f75a92ca7cf292fd3a95623623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084373275&rft_id=info:pmid/&rfr_iscdi=true |