Loading…
Kilometer-range, full-Stokes polarimetric imaging LiDAR using fractal superconducting nanowire single-photon detectors
Full-Stokes polarimetric imaging light detection and ranging (LiDAR) provides rich information about distance, materials, texture, surface orientations, and profiles of objects, and it is an important remote-sensing technology. One major challenge to reach a long distance is to efficiently collect a...
Saved in:
Published in: | Applied physics letters 2024-07, Vol.125 (4) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Full-Stokes polarimetric imaging light detection and ranging (LiDAR) provides rich information about distance, materials, texture, surface orientations, and profiles of objects, and it is an important remote-sensing technology. One major challenge to reach a long distance is to efficiently collect and detect the echo photons, as for long-range LiDAR, echo photons may become sparse. Here, we demonstrate a full-Stokes polarimetric imaging LiDAR, working at the eye-safe, telecommunication wavelength of 1560 nm, that can reach a range of 4 km. The key enabling technology is a four-channel system with multimode-fiber-coupled, large-area fractal superconducting nanowire single-photon detectors. Furthermore, we also explore faster imaging (e.g., pixel-dwell time of 1 ms) of the objects at a shorter distance, approximately 1 km. Our demonstration has significantly extended the working range of full-Stokes polarimetric imaging LiDAR and represents an important step toward practical systems that may enable many applications in remote sensing and the detection and recognition of targets. |
---|---|
ISSN: | 0003-6951 1077-3118 1077-3118 |
DOI: | 10.1063/5.0218531 |