Loading…
Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites
Aluminum is used in a wide range of industries, including the automotive, transportation, aerospace, minerals, and marine sectors, due to its high strength, stiffness, and wear resistance. It improves its qualities by including ceramic-fired bricks, fly ash, silicon carbide, tungsten carbide, and bo...
Saved in:
Published in: | International journal on interactive design and manufacturing 2024-07, Vol.18 (5), p.2983-2990 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-4652d96afd67e898a0924b54a4f48725db053768cb2c63d03271181af45d31c63 |
container_end_page | 2990 |
container_issue | 5 |
container_start_page | 2983 |
container_title | International journal on interactive design and manufacturing |
container_volume | 18 |
creator | Reddy, K. Sunil Kumar Kannan, M. Karthikeyan, R. Agrawal, Manoj Kumar Kumar, S. |
description | Aluminum is used in a wide range of industries, including the automotive, transportation, aerospace, minerals, and marine sectors, due to its high strength, stiffness, and wear resistance. It improves its qualities by including ceramic-fired bricks, fly ash, silicon carbide, tungsten carbide, and boron carbide as reinforcements. Stir casting is the most common and cost-effective method for processing and creating metal matrix composites, depending on the processing parameters, reinforcement, and matrix choices. All through the mix projecting interaction, a grid of aluminum 7475 is built up with changing extents of graphite (3, 6, 9, and 12 wt%) and coconut shell ash (10 wt%). This study found that stir-cast aluminum matrix cast composites have improved properties in terms of hardness and tensile strength. It also shows that when coconut shell ash powder and graphite are used as reinforcements, the AMMCs' coefficient of thermal expansion and thermal conductivity decrease. AMMCs' SEM images demonstrate the successful integration of reinforcements into the Al 7475 matrix. |
doi_str_mv | 10.1007/s12008-023-01401-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084591188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084591188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4652d96afd67e898a0924b54a4f48725db053768cb2c63d03271181af45d31c63</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAVaRWAee_2JnWVWFIlViAawtJ3GaVPnDdindcQduyElwCYIdG3v0_M08axC6xHCNAcSNwwRAxkBoDJgBjndHaIJTzmPCgR__akxP0ZlzG4BEgoQJ2ixedbPVvu67qC-j1uSV7upcN5HuishXxrZBD7YfjPW1cQdo1kSCCf75_jF_nIVzbfVQ1d5E1T6zdRFCfPC02tv6Lcr7duhdeHXn6KTUjTMXP_cUPd8unubLePVwdz-freKcCPAxSzgp0kSXRSKMTKWGlLCMM81KJgXhRQacikTmGckTWgAlAmOJdcl4QXEYTdHVmBt-_bI1zqtNv7VdWKkoSMbTgMtAkZHKbe-cNaUabN1qu1cY1KFTNXaqQqfqu1O1CyY6mlyAu7Wxf9H_uL4ARkJ7cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084591188</pqid></control><display><type>article</type><title>Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites</title><source>Springer Nature</source><creator>Reddy, K. Sunil Kumar ; Kannan, M. ; Karthikeyan, R. ; Agrawal, Manoj Kumar ; Kumar, S.</creator><creatorcontrib>Reddy, K. Sunil Kumar ; Kannan, M. ; Karthikeyan, R. ; Agrawal, Manoj Kumar ; Kumar, S.</creatorcontrib><description>Aluminum is used in a wide range of industries, including the automotive, transportation, aerospace, minerals, and marine sectors, due to its high strength, stiffness, and wear resistance. It improves its qualities by including ceramic-fired bricks, fly ash, silicon carbide, tungsten carbide, and boron carbide as reinforcements. Stir casting is the most common and cost-effective method for processing and creating metal matrix composites, depending on the processing parameters, reinforcement, and matrix choices. All through the mix projecting interaction, a grid of aluminum 7475 is built up with changing extents of graphite (3, 6, 9, and 12 wt%) and coconut shell ash (10 wt%). This study found that stir-cast aluminum matrix cast composites have improved properties in terms of hardness and tensile strength. It also shows that when coconut shell ash powder and graphite are used as reinforcements, the AMMCs' coefficient of thermal expansion and thermal conductivity decrease. AMMCs' SEM images demonstrate the successful integration of reinforcements into the Al 7475 matrix.</description><identifier>ISSN: 1955-2513</identifier><identifier>EISSN: 1955-2505</identifier><identifier>DOI: 10.1007/s12008-023-01401-w</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Aircraft ; Alloys ; Aluminum composites ; Aluminum matrix composites ; Boron carbide ; CAE) and Design ; Composite materials ; Computer-Aided Engineering (CAD ; Corrosion resistance ; Electronics and Microelectronics ; Engineering ; Engineering Design ; Fly ash ; Graphite ; Heat conductivity ; Industrial Design ; Instrumentation ; Load ; Manufacturing ; Mechanical Engineering ; Metal matrix composites ; Original Paper ; Process parameters ; Silicon carbide ; Solid lubricants ; Temperature ; Tensile strength ; Thermal conductivity ; Thermal expansion ; Thermodynamic properties ; Tungsten carbide ; Wear resistance</subject><ispartof>International journal on interactive design and manufacturing, 2024-07, Vol.18 (5), p.2983-2990</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4652d96afd67e898a0924b54a4f48725db053768cb2c63d03271181af45d31c63</cites><orcidid>0000-0002-8136-1144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reddy, K. Sunil Kumar</creatorcontrib><creatorcontrib>Kannan, M.</creatorcontrib><creatorcontrib>Karthikeyan, R.</creatorcontrib><creatorcontrib>Agrawal, Manoj Kumar</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><title>Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites</title><title>International journal on interactive design and manufacturing</title><addtitle>Int J Interact Des Manuf</addtitle><description>Aluminum is used in a wide range of industries, including the automotive, transportation, aerospace, minerals, and marine sectors, due to its high strength, stiffness, and wear resistance. It improves its qualities by including ceramic-fired bricks, fly ash, silicon carbide, tungsten carbide, and boron carbide as reinforcements. Stir casting is the most common and cost-effective method for processing and creating metal matrix composites, depending on the processing parameters, reinforcement, and matrix choices. All through the mix projecting interaction, a grid of aluminum 7475 is built up with changing extents of graphite (3, 6, 9, and 12 wt%) and coconut shell ash (10 wt%). This study found that stir-cast aluminum matrix cast composites have improved properties in terms of hardness and tensile strength. It also shows that when coconut shell ash powder and graphite are used as reinforcements, the AMMCs' coefficient of thermal expansion and thermal conductivity decrease. AMMCs' SEM images demonstrate the successful integration of reinforcements into the Al 7475 matrix.</description><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum composites</subject><subject>Aluminum matrix composites</subject><subject>Boron carbide</subject><subject>CAE) and Design</subject><subject>Composite materials</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Corrosion resistance</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fly ash</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Industrial Design</subject><subject>Instrumentation</subject><subject>Load</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Metal matrix composites</subject><subject>Original Paper</subject><subject>Process parameters</subject><subject>Silicon carbide</subject><subject>Solid lubricants</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><subject>Tungsten carbide</subject><subject>Wear resistance</subject><issn>1955-2513</issn><issn>1955-2505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAVaRWAee_2JnWVWFIlViAawtJ3GaVPnDdindcQduyElwCYIdG3v0_M08axC6xHCNAcSNwwRAxkBoDJgBjndHaIJTzmPCgR__akxP0ZlzG4BEgoQJ2ixedbPVvu67qC-j1uSV7upcN5HuishXxrZBD7YfjPW1cQdo1kSCCf75_jF_nIVzbfVQ1d5E1T6zdRFCfPC02tv6Lcr7duhdeHXn6KTUjTMXP_cUPd8unubLePVwdz-freKcCPAxSzgp0kSXRSKMTKWGlLCMM81KJgXhRQacikTmGckTWgAlAmOJdcl4QXEYTdHVmBt-_bI1zqtNv7VdWKkoSMbTgMtAkZHKbe-cNaUabN1qu1cY1KFTNXaqQqfqu1O1CyY6mlyAu7Wxf9H_uL4ARkJ7cQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Reddy, K. Sunil Kumar</creator><creator>Kannan, M.</creator><creator>Karthikeyan, R.</creator><creator>Agrawal, Manoj Kumar</creator><creator>Kumar, S.</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8136-1144</orcidid></search><sort><creationdate>20240701</creationdate><title>Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites</title><author>Reddy, K. Sunil Kumar ; Kannan, M. ; Karthikeyan, R. ; Agrawal, Manoj Kumar ; Kumar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4652d96afd67e898a0924b54a4f48725db053768cb2c63d03271181af45d31c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum composites</topic><topic>Aluminum matrix composites</topic><topic>Boron carbide</topic><topic>CAE) and Design</topic><topic>Composite materials</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Corrosion resistance</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fly ash</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Industrial Design</topic><topic>Instrumentation</topic><topic>Load</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Metal matrix composites</topic><topic>Original Paper</topic><topic>Process parameters</topic><topic>Silicon carbide</topic><topic>Solid lubricants</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><topic>Tungsten carbide</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, K. Sunil Kumar</creatorcontrib><creatorcontrib>Kannan, M.</creatorcontrib><creatorcontrib>Karthikeyan, R.</creatorcontrib><creatorcontrib>Agrawal, Manoj Kumar</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal on interactive design and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, K. Sunil Kumar</au><au>Kannan, M.</au><au>Karthikeyan, R.</au><au>Agrawal, Manoj Kumar</au><au>Kumar, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites</atitle><jtitle>International journal on interactive design and manufacturing</jtitle><stitle>Int J Interact Des Manuf</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>2983</spage><epage>2990</epage><pages>2983-2990</pages><issn>1955-2513</issn><eissn>1955-2505</eissn><abstract>Aluminum is used in a wide range of industries, including the automotive, transportation, aerospace, minerals, and marine sectors, due to its high strength, stiffness, and wear resistance. It improves its qualities by including ceramic-fired bricks, fly ash, silicon carbide, tungsten carbide, and boron carbide as reinforcements. Stir casting is the most common and cost-effective method for processing and creating metal matrix composites, depending on the processing parameters, reinforcement, and matrix choices. All through the mix projecting interaction, a grid of aluminum 7475 is built up with changing extents of graphite (3, 6, 9, and 12 wt%) and coconut shell ash (10 wt%). This study found that stir-cast aluminum matrix cast composites have improved properties in terms of hardness and tensile strength. It also shows that when coconut shell ash powder and graphite are used as reinforcements, the AMMCs' coefficient of thermal expansion and thermal conductivity decrease. AMMCs' SEM images demonstrate the successful integration of reinforcements into the Al 7475 matrix.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12008-023-01401-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8136-1144</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1955-2513 |
ispartof | International journal on interactive design and manufacturing, 2024-07, Vol.18 (5), p.2983-2990 |
issn | 1955-2513 1955-2505 |
language | eng |
recordid | cdi_proquest_journals_3084591188 |
source | Springer Nature |
subjects | Aircraft Alloys Aluminum composites Aluminum matrix composites Boron carbide CAE) and Design Composite materials Computer-Aided Engineering (CAD Corrosion resistance Electronics and Microelectronics Engineering Engineering Design Fly ash Graphite Heat conductivity Industrial Design Instrumentation Load Manufacturing Mechanical Engineering Metal matrix composites Original Paper Process parameters Silicon carbide Solid lubricants Temperature Tensile strength Thermal conductivity Thermal expansion Thermodynamic properties Tungsten carbide Wear resistance |
title | Evaluation of mechanical and thermal properties of Al 7475–CSA–graphite hybrid metal matrix composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20mechanical%20and%20thermal%20properties%20of%20Al%207475%E2%80%93CSA%E2%80%93graphite%20hybrid%20metal%20matrix%20composites&rft.jtitle=International%20journal%20on%20interactive%20design%20and%20manufacturing&rft.au=Reddy,%20K.%20Sunil%20Kumar&rft.date=2024-07-01&rft.volume=18&rft.issue=5&rft.spage=2983&rft.epage=2990&rft.pages=2983-2990&rft.issn=1955-2513&rft.eissn=1955-2505&rft_id=info:doi/10.1007/s12008-023-01401-w&rft_dat=%3Cproquest_cross%3E3084591188%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4652d96afd67e898a0924b54a4f48725db053768cb2c63d03271181af45d31c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084591188&rft_id=info:pmid/&rfr_iscdi=true |