Loading…
Lipase as Biocatalyst- for Synthesis of Phenol by Using Box-Behnken Design
This work highlighted the proficient and naturally safe methodology for the phenol synthesis using biocatalyst lipase. The development of sustainable synthetic protocol for various organic transformations is an important area of research attracts researchers to avoid use of volatile and hazardous or...
Saved in:
Published in: | Polycyclic aromatic compounds 2024-07, Vol.44 (6), p.4261-4272 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work highlighted the proficient and naturally safe methodology for the phenol synthesis using biocatalyst lipase. The development of sustainable synthetic protocol for various organic transformations is an important area of research attracts researchers to avoid use of volatile and hazardous organic solvents in reaction for greener and eco-friendly protocols. Lipase is subclass of esterase enzymes and acts as biocatalyst with industrial significance. They carry out biochemical transformation in non-aqueous and aqueous phases quickly. To further make the process more specific Design Expert software was used for the optimization of synthesize phenol for maximum % Yield and % Purity. Effect of temperature, Concentration of Catalyst, and Volume of Water was selected as an independent factor to get the maximum % Yield and % Purity of the phenol. The results confirmed the mathematical model robustness and justify experimental design. Therefore, the current protocol for synthesis of phenols from phenylboronic acid is greenest and environmentally benign alternative. The current convention has many benefits, like phenomenal product yields, reduced time of reaction, simple procedure to work up, and extensive substrate scope, cost-effective and also lipase was recuperated and reused multiple times without significant loss of its catalytic activity. |
---|---|
ISSN: | 1040-6638 1563-5333 |
DOI: | 10.1080/10406638.2023.2247123 |