Loading…
A hybrid recursive direct system for multi-step mortality rate forecasting
Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or und...
Saved in:
Published in: | The Journal of supercomputing 2024, Vol.80 (13), p.18430-18463 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3 |
container_end_page | 18463 |
container_issue | 13 |
container_start_page | 18430 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | de Lima Duarte, Filipe Coelho de Mattos Neto, Paulo S. G. Firmino, Paulo Renato Alves |
description | Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate. |
doi_str_mv | 10.1007/s11227-024-06182-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084742292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084742292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOZ8dOxqriU5VYultO7JRUTVNsBzX_npQgsTHdne79kB5CbjnccwD9EDlH1AxQMlA8R3Y8IzOeacFA5vKczKBAYHkm8ZJcxbgFACm0mJG3Bf0YytA4GnzVh9h8eeqacU80DjH5ltZdoG2_Sw0bzwNtu5DsrkkDDTb509dXNqZmv7kmF7XdRX_zO-dk_fS4Xr6w1fvz63KxYhVqSEwA-hIyodEp52xhlQKnuKtLkduiUEq4mgPPUPNcKe-LUlksAIWQluelmJO7KfYQus_ex2S2XR_2Y6MRkEstEQscVTipqtDFGHxtDqFpbRgMB3NCZiZkZkRmfpCZ42gSkymO4v3Gh7_of1zf_ppu_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084742292</pqid></control><display><type>article</type><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><source>Springer Nature</source><creator>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</creator><creatorcontrib>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</creatorcontrib><description>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06182-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Autoregressive models ; Compilers ; Computer Science ; Deep learning ; Forecasting ; Hybrid systems ; Interpreters ; Machine learning ; Mortality ; Noise prediction ; Processor Architectures ; Programming Languages ; Random noise ; Recursive methods ; Statistical analysis ; Time series</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (13), p.18430-18463</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</cites><orcidid>0000-0002-2038-4115 ; 0000-0002-3308-2650 ; 0000-0002-2396-7973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Lima Duarte, Filipe Coelho</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><creatorcontrib>Firmino, Paulo Renato Alves</creatorcontrib><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</description><subject>Autoregressive models</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>Hybrid systems</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Noise prediction</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Random noise</subject><subject>Recursive methods</subject><subject>Statistical analysis</subject><subject>Time series</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOZ8dOxqriU5VYultO7JRUTVNsBzX_npQgsTHdne79kB5CbjnccwD9EDlH1AxQMlA8R3Y8IzOeacFA5vKczKBAYHkm8ZJcxbgFACm0mJG3Bf0YytA4GnzVh9h8eeqacU80DjH5ltZdoG2_Sw0bzwNtu5DsrkkDDTb509dXNqZmv7kmF7XdRX_zO-dk_fS4Xr6w1fvz63KxYhVqSEwA-hIyodEp52xhlQKnuKtLkduiUEq4mgPPUPNcKe-LUlksAIWQluelmJO7KfYQus_ex2S2XR_2Y6MRkEstEQscVTipqtDFGHxtDqFpbRgMB3NCZiZkZkRmfpCZ42gSkymO4v3Gh7_of1zf_ppu_A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>de Lima Duarte, Filipe Coelho</creator><creator>de Mattos Neto, Paulo S. G.</creator><creator>Firmino, Paulo Renato Alves</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2038-4115</orcidid><orcidid>https://orcid.org/0000-0002-3308-2650</orcidid><orcidid>https://orcid.org/0000-0002-2396-7973</orcidid></search><sort><creationdate>2024</creationdate><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><author>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>Hybrid systems</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Noise prediction</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Random noise</topic><topic>Recursive methods</topic><topic>Statistical analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lima Duarte, Filipe Coelho</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><creatorcontrib>Firmino, Paulo Renato Alves</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lima Duarte, Filipe Coelho</au><au>de Mattos Neto, Paulo S. G.</au><au>Firmino, Paulo Renato Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid recursive direct system for multi-step mortality rate forecasting</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>13</issue><spage>18430</spage><epage>18463</epage><pages>18430-18463</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06182-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-2038-4115</orcidid><orcidid>https://orcid.org/0000-0002-3308-2650</orcidid><orcidid>https://orcid.org/0000-0002-2396-7973</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024, Vol.80 (13), p.18430-18463 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3084742292 |
source | Springer Nature |
subjects | Autoregressive models Compilers Computer Science Deep learning Forecasting Hybrid systems Interpreters Machine learning Mortality Noise prediction Processor Architectures Programming Languages Random noise Recursive methods Statistical analysis Time series |
title | A hybrid recursive direct system for multi-step mortality rate forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20recursive%20direct%20system%20for%20multi-step%20mortality%20rate%20forecasting&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=de%20Lima%20Duarte,%20Filipe%20Coelho&rft.date=2024&rft.volume=80&rft.issue=13&rft.spage=18430&rft.epage=18463&rft.pages=18430-18463&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06182-x&rft_dat=%3Cproquest_cross%3E3084742292%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084742292&rft_id=info:pmid/&rfr_iscdi=true |