Loading…

A hybrid recursive direct system for multi-step mortality rate forecasting

Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or und...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2024, Vol.80 (13), p.18430-18463
Main Authors: de Lima Duarte, Filipe Coelho, de Mattos Neto, Paulo S. G., Firmino, Paulo Renato Alves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3
container_end_page 18463
container_issue 13
container_start_page 18430
container_title The Journal of supercomputing
container_volume 80
creator de Lima Duarte, Filipe Coelho
de Mattos Neto, Paulo S. G.
Firmino, Paulo Renato Alves
description Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.
doi_str_mv 10.1007/s11227-024-06182-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3084742292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3084742292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOZ8dOxqriU5VYultO7JRUTVNsBzX_npQgsTHdne79kB5CbjnccwD9EDlH1AxQMlA8R3Y8IzOeacFA5vKczKBAYHkm8ZJcxbgFACm0mJG3Bf0YytA4GnzVh9h8eeqacU80DjH5ltZdoG2_Sw0bzwNtu5DsrkkDDTb509dXNqZmv7kmF7XdRX_zO-dk_fS4Xr6w1fvz63KxYhVqSEwA-hIyodEp52xhlQKnuKtLkduiUEq4mgPPUPNcKe-LUlksAIWQluelmJO7KfYQus_ex2S2XR_2Y6MRkEstEQscVTipqtDFGHxtDqFpbRgMB3NCZiZkZkRmfpCZ42gSkymO4v3Gh7_of1zf_ppu_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084742292</pqid></control><display><type>article</type><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><source>Springer Nature</source><creator>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</creator><creatorcontrib>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</creatorcontrib><description>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06182-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Autoregressive models ; Compilers ; Computer Science ; Deep learning ; Forecasting ; Hybrid systems ; Interpreters ; Machine learning ; Mortality ; Noise prediction ; Processor Architectures ; Programming Languages ; Random noise ; Recursive methods ; Statistical analysis ; Time series</subject><ispartof>The Journal of supercomputing, 2024, Vol.80 (13), p.18430-18463</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</cites><orcidid>0000-0002-2038-4115 ; 0000-0002-3308-2650 ; 0000-0002-2396-7973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Lima Duarte, Filipe Coelho</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><creatorcontrib>Firmino, Paulo Renato Alves</creatorcontrib><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</description><subject>Autoregressive models</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>Hybrid systems</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Noise prediction</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Random noise</subject><subject>Recursive methods</subject><subject>Statistical analysis</subject><subject>Time series</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOZ8dOxqriU5VYultO7JRUTVNsBzX_npQgsTHdne79kB5CbjnccwD9EDlH1AxQMlA8R3Y8IzOeacFA5vKczKBAYHkm8ZJcxbgFACm0mJG3Bf0YytA4GnzVh9h8eeqacU80DjH5ltZdoG2_Sw0bzwNtu5DsrkkDDTb509dXNqZmv7kmF7XdRX_zO-dk_fS4Xr6w1fvz63KxYhVqSEwA-hIyodEp52xhlQKnuKtLkduiUEq4mgPPUPNcKe-LUlksAIWQluelmJO7KfYQus_ex2S2XR_2Y6MRkEstEQscVTipqtDFGHxtDqFpbRgMB3NCZiZkZkRmfpCZ42gSkymO4v3Gh7_of1zf_ppu_A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>de Lima Duarte, Filipe Coelho</creator><creator>de Mattos Neto, Paulo S. G.</creator><creator>Firmino, Paulo Renato Alves</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2038-4115</orcidid><orcidid>https://orcid.org/0000-0002-3308-2650</orcidid><orcidid>https://orcid.org/0000-0002-2396-7973</orcidid></search><sort><creationdate>2024</creationdate><title>A hybrid recursive direct system for multi-step mortality rate forecasting</title><author>de Lima Duarte, Filipe Coelho ; de Mattos Neto, Paulo S. G. ; Firmino, Paulo Renato Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>Hybrid systems</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Noise prediction</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Random noise</topic><topic>Recursive methods</topic><topic>Statistical analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lima Duarte, Filipe Coelho</creatorcontrib><creatorcontrib>de Mattos Neto, Paulo S. G.</creatorcontrib><creatorcontrib>Firmino, Paulo Renato Alves</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lima Duarte, Filipe Coelho</au><au>de Mattos Neto, Paulo S. G.</au><au>Firmino, Paulo Renato Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid recursive direct system for multi-step mortality rate forecasting</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024</date><risdate>2024</risdate><volume>80</volume><issue>13</issue><spage>18430</spage><epage>18463</epage><pages>18430-18463</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Forecasting mortality is challenging. In general, mortality rate forecasting exercises have been based on the supposition that predictors’ residuals are random noise. However, issues regarding model selection, misspecification, or the dynamic behavior of the temporal phenomenon lead to biased or underperformed single models. Residual series might present temporal patterns that can still be used to improve the forecasting system. This paper proposes a new recursive direct multi-step Hybrid System for Mortality Forecasting (HyS-MF) that combines the Autoregressive Integrated Moving Average (ARIMA) with Neural Basis Expansion for Time Series Forecasting (N-BEATS). HyS-MF employs (i) ARIMA to model and forecast the mortality rate time series with a recursive approach and (ii) N-BEATS with the direct multi-step approach to learn and forecast the residuals of the linear predictor. The final output is generated by summing ARIMA with the N-BEATS forecasts in each time horizon. HyS-MF achieved an average Mean Absolute Percentage Error (MAPE) less than 1.34% considering all prediction horizons, beating statistical techniques, machine learning, deep learning models, and hybrid systems considering 101 different time series from the French population mortality rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06182-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-2038-4115</orcidid><orcidid>https://orcid.org/0000-0002-3308-2650</orcidid><orcidid>https://orcid.org/0000-0002-2396-7973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024, Vol.80 (13), p.18430-18463
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3084742292
source Springer Nature
subjects Autoregressive models
Compilers
Computer Science
Deep learning
Forecasting
Hybrid systems
Interpreters
Machine learning
Mortality
Noise prediction
Processor Architectures
Programming Languages
Random noise
Recursive methods
Statistical analysis
Time series
title A hybrid recursive direct system for multi-step mortality rate forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20recursive%20direct%20system%20for%20multi-step%20mortality%20rate%20forecasting&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=de%20Lima%20Duarte,%20Filipe%20Coelho&rft.date=2024&rft.volume=80&rft.issue=13&rft.spage=18430&rft.epage=18463&rft.pages=18430-18463&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06182-x&rft_dat=%3Cproquest_cross%3E3084742292%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-302eb05372d6dda9a660d61dfb38a99663df1015271866ee9b6a2902334a18b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084742292&rft_id=info:pmid/&rfr_iscdi=true