Loading…

Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes

This paper describes the technological process used to manufacture composite paints with a high content of metallic microparticles (Al and Fe) for automotive electromagnetic compatibility applications. The thickness of the deposited paint layer was larger for paints with a greater metal content, reg...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2024-07, Vol.14 (7), p.874
Main Authors: Ciobanu, Romeo Cristian, Aradoaei, Mihaela, Caramitu, Alina Ruxandra, Lungu, Magdalena Valentina, Schreiner, Oliver Daniel, Ion, Ioana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c235t-f7db80c3302436aeabbe0e82728eba709cea87bb92963502a3e5a6b7087156993
container_end_page
container_issue 7
container_start_page 874
container_title Coatings (Basel)
container_volume 14
creator Ciobanu, Romeo Cristian
Aradoaei, Mihaela
Caramitu, Alina Ruxandra
Lungu, Magdalena Valentina
Schreiner, Oliver Daniel
Ion, Ioana
description This paper describes the technological process used to manufacture composite paints with a high content of metallic microparticles (Al and Fe) for automotive electromagnetic compatibility applications. The thickness of the deposited paint layer was larger for paints with a greater metal content, regardless of the plastic support used for paint deposition. The roughness of paint layers with a greater content of metal particles was about 30%–35% higher than that of layers with a lower metal particle content, regardless of the metal type. The surface roughness of paint layers containing Al was at least 2.5-times higher than that of paint layers containing Fe, an aspect that could be explained by the better formulation of the paint containing Fe. The dielectric loss and conductivity values crucially depend on the plastic substrate used, meaning that the dipolar polarization of the substrate enhances the effect of conductive paints. Based on the dielectric properties measured at 10 kHz, the optimal recipe for efficient electromagnetic compatibility was found to be 20 wt.% Fe powder, deposited on a sandblasted polycarbonate (PC) substrate. It is expected that formulations of paints with a high percentage of metallic particles will effectively compete with traditional plastic metallization technologies.
doi_str_mv 10.3390/coatings14070874
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3084750177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803764735</galeid><sourcerecordid>A803764735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-f7db80c3302436aeabbe0e82728eba709cea87bb92963502a3e5a6b7087156993</originalsourceid><addsrcrecordid>eNpdUM9LwzAULqLgmLt7DHjuTJO2SY6jTCdsOFDPJU1fu4w2qUmG-N-bMQ_ie4f3-Pi-9-NLkvsMLykV-FFZGbTpfZZjhjnLr5IZwUykZZ6R6z_9bbLw_ohjiIzyTMyStrLjZL0OgPZSm-DRlw4HtNH9AVXWBDAB2Q7tIMhh0ArttHJ2ki5oNYBHnXVoPYAKzo6yNxBh9HbQMLTxHLQ_uTgb_F1y08nBw-K3zpOPp_V7tUm3r88v1WqbKkKLkHasbThWlGKS01KCbBrAwAkjHBrJsFAgOWsaQURJC0wkhUKWzfnjrCiFoPPk4TJ3cvbzBD7UR3tyJq6sKeY5K3DGWGQtL6xeDlBr09ngpIrZwqiVNdDpiK84pqzMGS2iAF8E8XXvHXT15PQo3Xed4frsf_3ff_oDJqN65Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084750177</pqid></control><display><type>article</type><title>Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes</title><source>Publicly Available Content Database</source><creator>Ciobanu, Romeo Cristian ; Aradoaei, Mihaela ; Caramitu, Alina Ruxandra ; Lungu, Magdalena Valentina ; Schreiner, Oliver Daniel ; Ion, Ioana</creator><creatorcontrib>Ciobanu, Romeo Cristian ; Aradoaei, Mihaela ; Caramitu, Alina Ruxandra ; Lungu, Magdalena Valentina ; Schreiner, Oliver Daniel ; Ion, Ioana</creatorcontrib><description>This paper describes the technological process used to manufacture composite paints with a high content of metallic microparticles (Al and Fe) for automotive electromagnetic compatibility applications. The thickness of the deposited paint layer was larger for paints with a greater metal content, regardless of the plastic support used for paint deposition. The roughness of paint layers with a greater content of metal particles was about 30%–35% higher than that of layers with a lower metal particle content, regardless of the metal type. The surface roughness of paint layers containing Al was at least 2.5-times higher than that of paint layers containing Fe, an aspect that could be explained by the better formulation of the paint containing Fe. The dielectric loss and conductivity values crucially depend on the plastic substrate used, meaning that the dipolar polarization of the substrate enhances the effect of conductive paints. Based on the dielectric properties measured at 10 kHz, the optimal recipe for efficient electromagnetic compatibility was found to be 20 wt.% Fe powder, deposited on a sandblasted polycarbonate (PC) substrate. It is expected that formulations of paints with a high percentage of metallic particles will effectively compete with traditional plastic metallization technologies.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14070874</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Copper ; Corrosion resistance ; Dielectric loss ; Dielectric properties ; Dielectrics ; Efficiency ; Electrical conductivity ; Electromagnetic compatibility ; Electromagnetic shielding ; Electromagnetism ; Electrostatic discharges ; Graphite ; Iron ; Metal particles ; Metallizing ; Microparticles ; Nanoparticles ; Nickel ; Paints ; Particulate composites ; Polycarbonates ; Powders ; Protective coatings ; Resins ; Silica ; Silver ; Solvents ; Substrates ; Surface roughness ; Surfactants ; Technology application ; Thickness ; Water</subject><ispartof>Coatings (Basel), 2024-07, Vol.14 (7), p.874</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-f7db80c3302436aeabbe0e82728eba709cea87bb92963502a3e5a6b7087156993</cites><orcidid>0000-0002-9173-9817 ; 0000-0002-7751-9324 ; 0000-0002-5399-6847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084750177/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084750177?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ciobanu, Romeo Cristian</creatorcontrib><creatorcontrib>Aradoaei, Mihaela</creatorcontrib><creatorcontrib>Caramitu, Alina Ruxandra</creatorcontrib><creatorcontrib>Lungu, Magdalena Valentina</creatorcontrib><creatorcontrib>Schreiner, Oliver Daniel</creatorcontrib><creatorcontrib>Ion, Ioana</creatorcontrib><title>Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes</title><title>Coatings (Basel)</title><description>This paper describes the technological process used to manufacture composite paints with a high content of metallic microparticles (Al and Fe) for automotive electromagnetic compatibility applications. The thickness of the deposited paint layer was larger for paints with a greater metal content, regardless of the plastic support used for paint deposition. The roughness of paint layers with a greater content of metal particles was about 30%–35% higher than that of layers with a lower metal particle content, regardless of the metal type. The surface roughness of paint layers containing Al was at least 2.5-times higher than that of paint layers containing Fe, an aspect that could be explained by the better formulation of the paint containing Fe. The dielectric loss and conductivity values crucially depend on the plastic substrate used, meaning that the dipolar polarization of the substrate enhances the effect of conductive paints. Based on the dielectric properties measured at 10 kHz, the optimal recipe for efficient electromagnetic compatibility was found to be 20 wt.% Fe powder, deposited on a sandblasted polycarbonate (PC) substrate. It is expected that formulations of paints with a high percentage of metallic particles will effectively compete with traditional plastic metallization technologies.</description><subject>Carbon</subject><subject>Copper</subject><subject>Corrosion resistance</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Efficiency</subject><subject>Electrical conductivity</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetic shielding</subject><subject>Electromagnetism</subject><subject>Electrostatic discharges</subject><subject>Graphite</subject><subject>Iron</subject><subject>Metal particles</subject><subject>Metallizing</subject><subject>Microparticles</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Paints</subject><subject>Particulate composites</subject><subject>Polycarbonates</subject><subject>Powders</subject><subject>Protective coatings</subject><subject>Resins</subject><subject>Silica</subject><subject>Silver</subject><subject>Solvents</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surfactants</subject><subject>Technology application</subject><subject>Thickness</subject><subject>Water</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUM9LwzAULqLgmLt7DHjuTJO2SY6jTCdsOFDPJU1fu4w2qUmG-N-bMQ_ie4f3-Pi-9-NLkvsMLykV-FFZGbTpfZZjhjnLr5IZwUykZZ6R6z_9bbLw_ohjiIzyTMyStrLjZL0OgPZSm-DRlw4HtNH9AVXWBDAB2Q7tIMhh0ArttHJ2ki5oNYBHnXVoPYAKzo6yNxBh9HbQMLTxHLQ_uTgb_F1y08nBw-K3zpOPp_V7tUm3r88v1WqbKkKLkHasbThWlGKS01KCbBrAwAkjHBrJsFAgOWsaQURJC0wkhUKWzfnjrCiFoPPk4TJ3cvbzBD7UR3tyJq6sKeY5K3DGWGQtL6xeDlBr09ngpIrZwqiVNdDpiK84pqzMGS2iAF8E8XXvHXT15PQo3Xed4frsf_3ff_oDJqN65Q</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Ciobanu, Romeo Cristian</creator><creator>Aradoaei, Mihaela</creator><creator>Caramitu, Alina Ruxandra</creator><creator>Lungu, Magdalena Valentina</creator><creator>Schreiner, Oliver Daniel</creator><creator>Ion, Ioana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9173-9817</orcidid><orcidid>https://orcid.org/0000-0002-7751-9324</orcidid><orcidid>https://orcid.org/0000-0002-5399-6847</orcidid></search><sort><creationdate>20240701</creationdate><title>Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes</title><author>Ciobanu, Romeo Cristian ; Aradoaei, Mihaela ; Caramitu, Alina Ruxandra ; Lungu, Magdalena Valentina ; Schreiner, Oliver Daniel ; Ion, Ioana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-f7db80c3302436aeabbe0e82728eba709cea87bb92963502a3e5a6b7087156993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Copper</topic><topic>Corrosion resistance</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Efficiency</topic><topic>Electrical conductivity</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetic shielding</topic><topic>Electromagnetism</topic><topic>Electrostatic discharges</topic><topic>Graphite</topic><topic>Iron</topic><topic>Metal particles</topic><topic>Metallizing</topic><topic>Microparticles</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Paints</topic><topic>Particulate composites</topic><topic>Polycarbonates</topic><topic>Powders</topic><topic>Protective coatings</topic><topic>Resins</topic><topic>Silica</topic><topic>Silver</topic><topic>Solvents</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surfactants</topic><topic>Technology application</topic><topic>Thickness</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciobanu, Romeo Cristian</creatorcontrib><creatorcontrib>Aradoaei, Mihaela</creatorcontrib><creatorcontrib>Caramitu, Alina Ruxandra</creatorcontrib><creatorcontrib>Lungu, Magdalena Valentina</creatorcontrib><creatorcontrib>Schreiner, Oliver Daniel</creatorcontrib><creatorcontrib>Ion, Ioana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciobanu, Romeo Cristian</au><au>Aradoaei, Mihaela</au><au>Caramitu, Alina Ruxandra</au><au>Lungu, Magdalena Valentina</au><au>Schreiner, Oliver Daniel</au><au>Ion, Ioana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>874</spage><pages>874-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>This paper describes the technological process used to manufacture composite paints with a high content of metallic microparticles (Al and Fe) for automotive electromagnetic compatibility applications. The thickness of the deposited paint layer was larger for paints with a greater metal content, regardless of the plastic support used for paint deposition. The roughness of paint layers with a greater content of metal particles was about 30%–35% higher than that of layers with a lower metal particle content, regardless of the metal type. The surface roughness of paint layers containing Al was at least 2.5-times higher than that of paint layers containing Fe, an aspect that could be explained by the better formulation of the paint containing Fe. The dielectric loss and conductivity values crucially depend on the plastic substrate used, meaning that the dipolar polarization of the substrate enhances the effect of conductive paints. Based on the dielectric properties measured at 10 kHz, the optimal recipe for efficient electromagnetic compatibility was found to be 20 wt.% Fe powder, deposited on a sandblasted polycarbonate (PC) substrate. It is expected that formulations of paints with a high percentage of metallic particles will effectively compete with traditional plastic metallization technologies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14070874</doi><orcidid>https://orcid.org/0000-0002-9173-9817</orcidid><orcidid>https://orcid.org/0000-0002-7751-9324</orcidid><orcidid>https://orcid.org/0000-0002-5399-6847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2024-07, Vol.14 (7), p.874
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_3084750177
source Publicly Available Content Database
subjects Carbon
Copper
Corrosion resistance
Dielectric loss
Dielectric properties
Dielectrics
Efficiency
Electrical conductivity
Electromagnetic compatibility
Electromagnetic shielding
Electromagnetism
Electrostatic discharges
Graphite
Iron
Metal particles
Metallizing
Microparticles
Nanoparticles
Nickel
Paints
Particulate composites
Polycarbonates
Powders
Protective coatings
Resins
Silica
Silver
Solvents
Substrates
Surface roughness
Surfactants
Technology application
Thickness
Water
title Composite Paints with High Content of Metallic Microparticles for Electromagnetic Shielding Purposes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Paints%20with%20High%20Content%20of%20Metallic%20Microparticles%20for%20Electromagnetic%20Shielding%20Purposes&rft.jtitle=Coatings%20(Basel)&rft.au=Ciobanu,%20Romeo%20Cristian&rft.date=2024-07-01&rft.volume=14&rft.issue=7&rft.spage=874&rft.pages=874-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14070874&rft_dat=%3Cgale_proqu%3EA803764735%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c235t-f7db80c3302436aeabbe0e82728eba709cea87bb92963502a3e5a6b7087156993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084750177&rft_id=info:pmid/&rft_galeid=A803764735&rfr_iscdi=true