Loading…
Tunable colloidal spinners: Active chirality and hydrodynamic interactions governed by rotating external electric fields
The rotational dynamics of microparticles in liquids have a wide range of applications, including chemical microreactors, biotechnologies, microfluidic devices, tunable heat and mass transfer, and fundamental understanding of chiral active soft matter which refers to systems composed of particles th...
Saved in:
Published in: | The Journal of chemical physics 2024-07, Vol.161 (4) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rotational dynamics of microparticles in liquids have a wide range of applications, including chemical microreactors, biotechnologies, microfluidic devices, tunable heat and mass transfer, and fundamental understanding of chiral active soft matter which refers to systems composed of particles that exhibit a handedness in their rotation, breaking mirror symmetry at the microscopic level. Here, we report on the study of two effects in colloids in rotating electric fields: (i) the rotation of individual colloidal particles in rotating electric field and related to that (ii) precession of pairs of particles. We show that the mechanism responsible for the rotation of individual particles is related to the time lag between the external field applied to the particle and the particle polarization. Using numerical simulations and experiments with silica particles in a water-based solvent, we prove that the observed rotation of particle pairs and triplets is governed by the tunable rotation of individual particles and can be explained and described by the action of hydrodynamic forces. Our findings demonstrate that colloidal suspensions in rotating electric fields, under some conditions, represent a novel class of chiral soft active matter—tunable colloidal spinners. The experiments and the corresponding theoretical framework we developed open novel prospects for future studies of these systems and for their potential applications. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0210859 |