Loading…

The Research on Microwave Drying Characteristics of Polyethylene Terephthalate Materials Based on Frequency and Power Tuning Technology

Polyethylene Terephthalate (PET), renowned for its exceptional physical and chemical properties, finds widespread use in our daily lives. However, conventional PET drying methods are time consuming and energy intensive. Leveraging microwave heating effects, we investigated drying characteristics con...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2024-07, Vol.12 (7), p.1488
Main Authors: Liao, Chongwei, He, Zhongqi, Tang, Rong, Zhang, Weixin, Liu, Changjun, Wang, Chuanlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyethylene Terephthalate (PET), renowned for its exceptional physical and chemical properties, finds widespread use in our daily lives. However, conventional PET drying methods are time consuming and energy intensive. Leveraging microwave heating effects, we investigated drying characteristics concerning both microwave parameters and PET permittivity. The PET permittivity variation during heating is related to the microwave reflection at the incident port. Our innovative approach involves frequency and power tuning based on reflection. This method not only significantly improved heating uniformity and reduced temperature covariance (COVT) but also led to a more uniformly distributed temperature profile and a drastic reduction in energy consumption. Integrating precise and rapid frequency tuning, we compared our method’s efficiency with traditional approaches, revealing an impressive time savings of 2 h and an energy consumption limited to approximately less than 3 kWh/kg. Notably, our laboratory system’s logistic models of the Moisture Ratio (MR) related to rotary rates, masses, and powers whose averages of R-square are 0.9972, 0.9982, and 0.9977, respectively, which provide intriguing insights for industrial production forecasts during variable frequency PET drying.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12071488