Loading…

Highly integrable silicon micropumps using lateral electrostatic bending actuators

We present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier...

Full description

Saved in:
Bibliographic Details
Published in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2024-08, Vol.30 (8), p.949-960
Main Authors: Uhlig, Sebastian, Gaudet, Matthieu, Langa, Sergiu, Ruffert, Christine, Jongmanns, Marcel, Schenk, Harald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-1e8945dd5538a96fe280fcc87a566ed019bd2e8e46c6e0eaa161ff1ffcdaad823
container_end_page 960
container_issue 8
container_start_page 949
container_title Microsystem technologies : sensors, actuators, systems integration
container_volume 30
creator Uhlig, Sebastian
Gaudet, Matthieu
Langa, Sergiu
Ruffert, Christine
Jongmanns, Marcel
Schenk, Harald
description We present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier (Borcia et al. in Phys Rev Fluids 3(8): 084202, 2018. 10.1103/PhysRevFluids.3.084202; Uhlig et al. in Micromachines, 9(4), 2018. 10.3390/mi9040190). This paper presents the characterization results achieved with the micropump. The dielectric non-polar liquid Novec7100™ was used as a test liquid due to its adequate physical properties. When applying a periodic voltage of 130 V, a flow rate of up to 80 µL/min was detected. The counter pressure amounts up to 30 kPa and the correspondent fluidic power (volumetric flow rate times the counter pressure) was calculated to 10 µW. The pump contains passive flap valves at the inlet and outlet, which are based on a bending cantilever design. Depending on the application requirements, the micropump can be designed modularly to adjust the specific parameters by an adequate arrangement of pump base units. In this paper, the proof of principle is shown using a single base unit with different number of stacked NED-actuator beams, as well as the serial arrangement of base units. Both modular concepts target the increase of backpressure of the NED-micropump in an inherently different way compared to conventional membrane micropumps.
doi_str_mv 10.1007/s00542-024-05635-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085153626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085153626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1e8945dd5538a96fe280fcc87a566ed019bd2e8e46c6e0eaa161ff1ffcdaad823</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9F8NGl6lEVdYUEQPYdsOq1Zum1NUpb992at4E0YmMO8zwzzIHTD6B2jtLyPlMqCE8oLQqUSkuxP0IIVghOmpT5FC1oVipS0VOfoIsYtzVClxQK9rXz72R2w7xO0wW46wNF33g093nkXhnHajRFP0fct7myCYDsMHbgUhphs8g5voK-PU-vSZNMQ4hU6a2wX4fq3X6KPp8f35YqsX59flg9r4gQrEmGgq0LWtZRC20o1wDVtnNOllUpBTVm1qTloKJRTQMFapljT5HK1tbXm4hLdznvHMHxNEJPZDlPo80kjqJZMCsVVTvE5lZ-JMUBjxuB3NhwMo-bozszuTHZnftyZfYbEDMUc7lsIf6v_ob4BqVF00Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085153626</pqid></control><display><type>article</type><title>Highly integrable silicon micropumps using lateral electrostatic bending actuators</title><source>Springer Nature</source><creator>Uhlig, Sebastian ; Gaudet, Matthieu ; Langa, Sergiu ; Ruffert, Christine ; Jongmanns, Marcel ; Schenk, Harald</creator><creatorcontrib>Uhlig, Sebastian ; Gaudet, Matthieu ; Langa, Sergiu ; Ruffert, Christine ; Jongmanns, Marcel ; Schenk, Harald</creatorcontrib><description>We present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier (Borcia et al. in Phys Rev Fluids 3(8): 084202, 2018. 10.1103/PhysRevFluids.3.084202; Uhlig et al. in Micromachines, 9(4), 2018. 10.3390/mi9040190). This paper presents the characterization results achieved with the micropump. The dielectric non-polar liquid Novec7100™ was used as a test liquid due to its adequate physical properties. When applying a periodic voltage of 130 V, a flow rate of up to 80 µL/min was detected. The counter pressure amounts up to 30 kPa and the correspondent fluidic power (volumetric flow rate times the counter pressure) was calculated to 10 µW. The pump contains passive flap valves at the inlet and outlet, which are based on a bending cantilever design. Depending on the application requirements, the micropump can be designed modularly to adjust the specific parameters by an adequate arrangement of pump base units. In this paper, the proof of principle is shown using a single base unit with different number of stacked NED-actuator beams, as well as the serial arrangement of base units. Both modular concepts target the increase of backpressure of the NED-micropump in an inherently different way compared to conventional membrane micropumps.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-024-05635-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuators ; Bending machines ; Cantilever beams ; Design parameters ; Electrodes ; Electronics and Microelectronics ; Energy consumption ; Engineering ; Flap valves ; Flow velocity ; Instrumentation ; Lead content ; Mechanical Engineering ; Micropumps ; Modular units ; Nanotechnology ; Physical properties ; Portable equipment ; Pressure distribution ; Silicon ; Technical Paper ; Valves</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2024-08, Vol.30 (8), p.949-960</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1e8945dd5538a96fe280fcc87a566ed019bd2e8e46c6e0eaa161ff1ffcdaad823</cites><orcidid>0000-0002-5102-8105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Uhlig, Sebastian</creatorcontrib><creatorcontrib>Gaudet, Matthieu</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Ruffert, Christine</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><title>Highly integrable silicon micropumps using lateral electrostatic bending actuators</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>We present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier (Borcia et al. in Phys Rev Fluids 3(8): 084202, 2018. 10.1103/PhysRevFluids.3.084202; Uhlig et al. in Micromachines, 9(4), 2018. 10.3390/mi9040190). This paper presents the characterization results achieved with the micropump. The dielectric non-polar liquid Novec7100™ was used as a test liquid due to its adequate physical properties. When applying a periodic voltage of 130 V, a flow rate of up to 80 µL/min was detected. The counter pressure amounts up to 30 kPa and the correspondent fluidic power (volumetric flow rate times the counter pressure) was calculated to 10 µW. The pump contains passive flap valves at the inlet and outlet, which are based on a bending cantilever design. Depending on the application requirements, the micropump can be designed modularly to adjust the specific parameters by an adequate arrangement of pump base units. In this paper, the proof of principle is shown using a single base unit with different number of stacked NED-actuator beams, as well as the serial arrangement of base units. Both modular concepts target the increase of backpressure of the NED-micropump in an inherently different way compared to conventional membrane micropumps.</description><subject>Actuators</subject><subject>Bending machines</subject><subject>Cantilever beams</subject><subject>Design parameters</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Flap valves</subject><subject>Flow velocity</subject><subject>Instrumentation</subject><subject>Lead content</subject><subject>Mechanical Engineering</subject><subject>Micropumps</subject><subject>Modular units</subject><subject>Nanotechnology</subject><subject>Physical properties</subject><subject>Portable equipment</subject><subject>Pressure distribution</subject><subject>Silicon</subject><subject>Technical Paper</subject><subject>Valves</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9F8NGl6lEVdYUEQPYdsOq1Zum1NUpb992at4E0YmMO8zwzzIHTD6B2jtLyPlMqCE8oLQqUSkuxP0IIVghOmpT5FC1oVipS0VOfoIsYtzVClxQK9rXz72R2w7xO0wW46wNF33g093nkXhnHajRFP0fct7myCYDsMHbgUhphs8g5voK-PU-vSZNMQ4hU6a2wX4fq3X6KPp8f35YqsX59flg9r4gQrEmGgq0LWtZRC20o1wDVtnNOllUpBTVm1qTloKJRTQMFapljT5HK1tbXm4hLdznvHMHxNEJPZDlPo80kjqJZMCsVVTvE5lZ-JMUBjxuB3NhwMo-bozszuTHZnftyZfYbEDMUc7lsIf6v_ob4BqVF00Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Uhlig, Sebastian</creator><creator>Gaudet, Matthieu</creator><creator>Langa, Sergiu</creator><creator>Ruffert, Christine</creator><creator>Jongmanns, Marcel</creator><creator>Schenk, Harald</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5102-8105</orcidid></search><sort><creationdate>20240801</creationdate><title>Highly integrable silicon micropumps using lateral electrostatic bending actuators</title><author>Uhlig, Sebastian ; Gaudet, Matthieu ; Langa, Sergiu ; Ruffert, Christine ; Jongmanns, Marcel ; Schenk, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1e8945dd5538a96fe280fcc87a566ed019bd2e8e46c6e0eaa161ff1ffcdaad823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Bending machines</topic><topic>Cantilever beams</topic><topic>Design parameters</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Flap valves</topic><topic>Flow velocity</topic><topic>Instrumentation</topic><topic>Lead content</topic><topic>Mechanical Engineering</topic><topic>Micropumps</topic><topic>Modular units</topic><topic>Nanotechnology</topic><topic>Physical properties</topic><topic>Portable equipment</topic><topic>Pressure distribution</topic><topic>Silicon</topic><topic>Technical Paper</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhlig, Sebastian</creatorcontrib><creatorcontrib>Gaudet, Matthieu</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Ruffert, Christine</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhlig, Sebastian</au><au>Gaudet, Matthieu</au><au>Langa, Sergiu</au><au>Ruffert, Christine</au><au>Jongmanns, Marcel</au><au>Schenk, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly integrable silicon micropumps using lateral electrostatic bending actuators</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>30</volume><issue>8</issue><spage>949</spage><epage>960</epage><pages>949-960</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>We present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier (Borcia et al. in Phys Rev Fluids 3(8): 084202, 2018. 10.1103/PhysRevFluids.3.084202; Uhlig et al. in Micromachines, 9(4), 2018. 10.3390/mi9040190). This paper presents the characterization results achieved with the micropump. The dielectric non-polar liquid Novec7100™ was used as a test liquid due to its adequate physical properties. When applying a periodic voltage of 130 V, a flow rate of up to 80 µL/min was detected. The counter pressure amounts up to 30 kPa and the correspondent fluidic power (volumetric flow rate times the counter pressure) was calculated to 10 µW. The pump contains passive flap valves at the inlet and outlet, which are based on a bending cantilever design. Depending on the application requirements, the micropump can be designed modularly to adjust the specific parameters by an adequate arrangement of pump base units. In this paper, the proof of principle is shown using a single base unit with different number of stacked NED-actuator beams, as well as the serial arrangement of base units. Both modular concepts target the increase of backpressure of the NED-micropump in an inherently different way compared to conventional membrane micropumps.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-024-05635-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5102-8105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-7076
ispartof Microsystem technologies : sensors, actuators, systems integration, 2024-08, Vol.30 (8), p.949-960
issn 0946-7076
1432-1858
language eng
recordid cdi_proquest_journals_3085153626
source Springer Nature
subjects Actuators
Bending machines
Cantilever beams
Design parameters
Electrodes
Electronics and Microelectronics
Energy consumption
Engineering
Flap valves
Flow velocity
Instrumentation
Lead content
Mechanical Engineering
Micropumps
Modular units
Nanotechnology
Physical properties
Portable equipment
Pressure distribution
Silicon
Technical Paper
Valves
title Highly integrable silicon micropumps using lateral electrostatic bending actuators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20integrable%20silicon%20micropumps%20using%20lateral%20electrostatic%20bending%20actuators&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Uhlig,%20Sebastian&rft.date=2024-08-01&rft.volume=30&rft.issue=8&rft.spage=949&rft.epage=960&rft.pages=949-960&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-024-05635-w&rft_dat=%3Cproquest_cross%3E3085153626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-1e8945dd5538a96fe280fcc87a566ed019bd2e8e46c6e0eaa161ff1ffcdaad823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085153626&rft_id=info:pmid/&rfr_iscdi=true