Loading…
Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory
One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media...
Saved in:
Published in: | Geotechnical and geological engineering 2024-08, Vol.42 (6), p.4375-4399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3 |
container_end_page | 4399 |
container_issue | 6 |
container_start_page | 4375 |
container_title | Geotechnical and geological engineering |
container_volume | 42 |
creator | Taslimian, Rohollah Noorzad, Ali |
description | One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow. |
doi_str_mv | 10.1007/s10706-024-02785-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085156961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085156961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9A55IPKMMLOxyNNWqSdWD9UwoZVuaFips0_Tfi10Tbx4mM4f33rx8CF0DvQVK67sMtKaSUFaVqRtB5AkagKg5AcHUKRpQJSnh0LBzdJHzilLKJIUBGk_81861xnY-BvzqO78wx_Mz-7DAH10MDo_iercJGe99t8RvMZAHk-wBj9dxj6dLF9PhEp21Zp3d1e8eoun4cTp6JpP3p5fR_YQYXrGOMG6lnQFncyGNAC4kB1ZJrpRpzFzxyjVCsHZuxEwy67ia1c4aaawAKeqWD9FNH7tNsdTOnV7FXQrlo-a0ESCkklBUrFfZFHNOrtXb5DcmHTRQ_YNL97h0waWPuLQsJt6bchGHhUt_0f-4vgHT8GxN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085156961</pqid></control><display><type>article</type><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><source>Springer Link</source><creator>Taslimian, Rohollah ; Noorzad, Ali</creator><creatorcontrib>Taslimian, Rohollah ; Noorzad, Ali</creatorcontrib><description>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-024-02785-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Civil Engineering ; Darcys law ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Finite element method ; Flow theory ; Fluid flow ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Hydrogeology ; Hydrostatic pressure ; Impact analysis ; Liquefaction ; Membrane permeability ; Mitigation ; Nonlinear response ; Numerical analysis ; Original Paper ; Permeability ; Pore pressure ; Pore water ; Pore water pressure ; Porous media ; Porous media flow ; Pressure effects ; Seepage ; Seismic activity ; Seismic response ; Stone ; Stone columns ; Terrestrial Pollution ; Waste Management/Waste Technology ; Water pressure</subject><ispartof>Geotechnical and geological engineering, 2024-08, Vol.42 (6), p.4375-4399</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</citedby><cites>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</cites><orcidid>0000-0002-6039-5628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Taslimian, Rohollah</creatorcontrib><creatorcontrib>Noorzad, Ali</creatorcontrib><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</description><subject>Civil Engineering</subject><subject>Darcys law</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Finite element method</subject><subject>Flow theory</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Hydrostatic pressure</subject><subject>Impact analysis</subject><subject>Liquefaction</subject><subject>Membrane permeability</subject><subject>Mitigation</subject><subject>Nonlinear response</subject><subject>Numerical analysis</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Pore pressure</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Pressure effects</subject><subject>Seepage</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Stone</subject><subject>Stone columns</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><subject>Water pressure</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEQhYnRxFr9A55IPKMMLOxyNNWqSdWD9UwoZVuaFips0_Tfi10Tbx4mM4f33rx8CF0DvQVK67sMtKaSUFaVqRtB5AkagKg5AcHUKRpQJSnh0LBzdJHzilLKJIUBGk_81861xnY-BvzqO78wx_Mz-7DAH10MDo_iercJGe99t8RvMZAHk-wBj9dxj6dLF9PhEp21Zp3d1e8eoun4cTp6JpP3p5fR_YQYXrGOMG6lnQFncyGNAC4kB1ZJrpRpzFzxyjVCsHZuxEwy67ia1c4aaawAKeqWD9FNH7tNsdTOnV7FXQrlo-a0ESCkklBUrFfZFHNOrtXb5DcmHTRQ_YNL97h0waWPuLQsJt6bchGHhUt_0f-4vgHT8GxN</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Taslimian, Rohollah</creator><creator>Noorzad, Ali</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6039-5628</orcidid></search><sort><creationdate>20240801</creationdate><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><author>Taslimian, Rohollah ; Noorzad, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Civil Engineering</topic><topic>Darcys law</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Finite element method</topic><topic>Flow theory</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Hydrostatic pressure</topic><topic>Impact analysis</topic><topic>Liquefaction</topic><topic>Membrane permeability</topic><topic>Mitigation</topic><topic>Nonlinear response</topic><topic>Numerical analysis</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Pore pressure</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Pressure effects</topic><topic>Seepage</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Stone</topic><topic>Stone columns</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taslimian, Rohollah</creatorcontrib><creatorcontrib>Noorzad, Ali</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taslimian, Rohollah</au><au>Noorzad, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>42</volume><issue>6</issue><spage>4375</spage><epage>4399</epage><pages>4375-4399</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-024-02785-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6039-5628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3182 |
ispartof | Geotechnical and geological engineering, 2024-08, Vol.42 (6), p.4375-4399 |
issn | 0960-3182 1573-1529 |
language | eng |
recordid | cdi_proquest_journals_3085156961 |
source | Springer Link |
subjects | Civil Engineering Darcys law Earth and Environmental Science Earth Sciences Earthquakes Finite element method Flow theory Fluid flow Geotechnical Engineering & Applied Earth Sciences Ground motion Hydrogeology Hydrostatic pressure Impact analysis Liquefaction Membrane permeability Mitigation Nonlinear response Numerical analysis Original Paper Permeability Pore pressure Pore water Pore water pressure Porous media Porous media flow Pressure effects Seepage Seismic activity Seismic response Stone Stone columns Terrestrial Pollution Waste Management/Waste Technology Water pressure |
title | Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquefaction%20Mitigation%20Using%20Stone%20Columns%20with%20Non-Darcy%20Flow%20Theory&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Taslimian,%20Rohollah&rft.date=2024-08-01&rft.volume=42&rft.issue=6&rft.spage=4375&rft.epage=4399&rft.pages=4375-4399&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-024-02785-6&rft_dat=%3Cproquest_cross%3E3085156961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085156961&rft_id=info:pmid/&rfr_iscdi=true |