Loading…

Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory

One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media...

Full description

Saved in:
Bibliographic Details
Published in:Geotechnical and geological engineering 2024-08, Vol.42 (6), p.4375-4399
Main Authors: Taslimian, Rohollah, Noorzad, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3
cites cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3
container_end_page 4399
container_issue 6
container_start_page 4375
container_title Geotechnical and geological engineering
container_volume 42
creator Taslimian, Rohollah
Noorzad, Ali
description One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.
doi_str_mv 10.1007/s10706-024-02785-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085156961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085156961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9A55IPKMMLOxyNNWqSdWD9UwoZVuaFips0_Tfi10Tbx4mM4f33rx8CF0DvQVK67sMtKaSUFaVqRtB5AkagKg5AcHUKRpQJSnh0LBzdJHzilLKJIUBGk_81861xnY-BvzqO78wx_Mz-7DAH10MDo_iercJGe99t8RvMZAHk-wBj9dxj6dLF9PhEp21Zp3d1e8eoun4cTp6JpP3p5fR_YQYXrGOMG6lnQFncyGNAC4kB1ZJrpRpzFzxyjVCsHZuxEwy67ia1c4aaawAKeqWD9FNH7tNsdTOnV7FXQrlo-a0ESCkklBUrFfZFHNOrtXb5DcmHTRQ_YNL97h0waWPuLQsJt6bchGHhUt_0f-4vgHT8GxN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085156961</pqid></control><display><type>article</type><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><source>Springer Link</source><creator>Taslimian, Rohollah ; Noorzad, Ali</creator><creatorcontrib>Taslimian, Rohollah ; Noorzad, Ali</creatorcontrib><description>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-024-02785-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Civil Engineering ; Darcys law ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Finite element method ; Flow theory ; Fluid flow ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Hydrostatic pressure ; Impact analysis ; Liquefaction ; Membrane permeability ; Mitigation ; Nonlinear response ; Numerical analysis ; Original Paper ; Permeability ; Pore pressure ; Pore water ; Pore water pressure ; Porous media ; Porous media flow ; Pressure effects ; Seepage ; Seismic activity ; Seismic response ; Stone ; Stone columns ; Terrestrial Pollution ; Waste Management/Waste Technology ; Water pressure</subject><ispartof>Geotechnical and geological engineering, 2024-08, Vol.42 (6), p.4375-4399</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</citedby><cites>FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</cites><orcidid>0000-0002-6039-5628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Taslimian, Rohollah</creatorcontrib><creatorcontrib>Noorzad, Ali</creatorcontrib><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</description><subject>Civil Engineering</subject><subject>Darcys law</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Finite element method</subject><subject>Flow theory</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Hydrostatic pressure</subject><subject>Impact analysis</subject><subject>Liquefaction</subject><subject>Membrane permeability</subject><subject>Mitigation</subject><subject>Nonlinear response</subject><subject>Numerical analysis</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Pore pressure</subject><subject>Pore water</subject><subject>Pore water pressure</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Pressure effects</subject><subject>Seepage</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Stone</subject><subject>Stone columns</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><subject>Water pressure</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEQhYnRxFr9A55IPKMMLOxyNNWqSdWD9UwoZVuaFips0_Tfi10Tbx4mM4f33rx8CF0DvQVK67sMtKaSUFaVqRtB5AkagKg5AcHUKRpQJSnh0LBzdJHzilLKJIUBGk_81861xnY-BvzqO78wx_Mz-7DAH10MDo_iercJGe99t8RvMZAHk-wBj9dxj6dLF9PhEp21Zp3d1e8eoun4cTp6JpP3p5fR_YQYXrGOMG6lnQFncyGNAC4kB1ZJrpRpzFzxyjVCsHZuxEwy67ia1c4aaawAKeqWD9FNH7tNsdTOnV7FXQrlo-a0ESCkklBUrFfZFHNOrtXb5DcmHTRQ_YNL97h0waWPuLQsJt6bchGHhUt_0f-4vgHT8GxN</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Taslimian, Rohollah</creator><creator>Noorzad, Ali</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6039-5628</orcidid></search><sort><creationdate>20240801</creationdate><title>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</title><author>Taslimian, Rohollah ; Noorzad, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Civil Engineering</topic><topic>Darcys law</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Finite element method</topic><topic>Flow theory</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Hydrostatic pressure</topic><topic>Impact analysis</topic><topic>Liquefaction</topic><topic>Membrane permeability</topic><topic>Mitigation</topic><topic>Nonlinear response</topic><topic>Numerical analysis</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Pore pressure</topic><topic>Pore water</topic><topic>Pore water pressure</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Pressure effects</topic><topic>Seepage</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Stone</topic><topic>Stone columns</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taslimian, Rohollah</creatorcontrib><creatorcontrib>Noorzad, Ali</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taslimian, Rohollah</au><au>Noorzad, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>42</volume><issue>6</issue><spage>4375</spage><epage>4399</epage><pages>4375-4399</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>One effective technique for mitigating the earthquake-induced liquefaction potential is the installation of stone columns. The permeability coefficients of stone columns are high enough to cause a high seepage velocity or expedited drainage. Under such conditions, the fluid flow law in porous media is not linear. Nevertheless, this nonlinear behavior in stone columns has not been evaluated in dynamic numerical analyses. This study proposes a dynamic finite element method that integrates nonlinear fluid flow law to evaluate the response of liquefiable ground improved by stone columns during seismic events. The impact of non-Darcy flow on the excess pore pressure and stress path compared to conventional Darcy law has been investigated numerically in stone columns. Furthermore, the effects of different permeability coefficients and stone column depths have been studied under near and far field strong ground motions. The results indicate that the non-Darcy flow increases the excess pore water pressure as high as 100% in comparison to the Darcy flow.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-024-02785-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6039-5628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2024-08, Vol.42 (6), p.4375-4399
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_3085156961
source Springer Link
subjects Civil Engineering
Darcys law
Earth and Environmental Science
Earth Sciences
Earthquakes
Finite element method
Flow theory
Fluid flow
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Hydrostatic pressure
Impact analysis
Liquefaction
Membrane permeability
Mitigation
Nonlinear response
Numerical analysis
Original Paper
Permeability
Pore pressure
Pore water
Pore water pressure
Porous media
Porous media flow
Pressure effects
Seepage
Seismic activity
Seismic response
Stone
Stone columns
Terrestrial Pollution
Waste Management/Waste Technology
Water pressure
title Liquefaction Mitigation Using Stone Columns with Non-Darcy Flow Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquefaction%20Mitigation%20Using%20Stone%20Columns%20with%20Non-Darcy%20Flow%20Theory&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Taslimian,%20Rohollah&rft.date=2024-08-01&rft.volume=42&rft.issue=6&rft.spage=4375&rft.epage=4399&rft.pages=4375-4399&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-024-02785-6&rft_dat=%3Cproquest_cross%3E3085156961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-23c6cb132d56a5135631246399a8ad934e8552fda5b62ce39b7eca6ac51657f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085156961&rft_id=info:pmid/&rfr_iscdi=true