Loading…

Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles

A356/LM25 aluminum casting alloys are widely used in various aerospace, automobile, and engineering applications due to their high strength-to-weight ratio. With the growing demand for lightweight and high-strength components, aluminum matrix composites have emerged as promising materials for many e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Institution of Engineers (India) Series C 2024, Vol.105 (3), p.457-470
Main Authors: Sarvani, Rahamthulla Khan, Mohinoddin, Mohd, Ramakrishna, L. Siva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185w-9e32c5822f7c3448c8148dd6bba4b8653bf4478d8c0e36bfca92a3cc84a9a3963
container_end_page 470
container_issue 3
container_start_page 457
container_title Journal of the Institution of Engineers (India) Series C
container_volume 105
creator Sarvani, Rahamthulla Khan
Mohinoddin, Mohd
Ramakrishna, L. Siva
description A356/LM25 aluminum casting alloys are widely used in various aerospace, automobile, and engineering applications due to their high strength-to-weight ratio. With the growing demand for lightweight and high-strength components, aluminum matrix composites have emerged as promising materials for many engineering applications. In this study, we fabricated hybrid composites of A356/LM25 alloy reinforced with micro-sized ceramic particles, including ZrO 2 , Al 2 O 3 , SiC, MgO, and Gr particulates, with different weight percentages (1, 3, and 5%), using the stir casting method. To analyze the composites’ morphology and the distribution of reinforcement, we used Scanning Electron Microscope (SEM) combined with Energy Dispersive X-ray (EDX) Spectroscopy at varying magnification levels. We also utilized X-Ray Diffraction (XRD) technique to examine the material powder’s crystalline or amorphous nature. Additionally, we conducted a tensile test to determine the tensile strength and a Brinell hardness test to measure the hardness of the alloy composite. We achieved the highest tensile strength of 305.7 MPa for the LM25 + 1%MgO + 3%SiC composition, while the highest hardness of 96.95 BHN was obtained for the LM25 + 5%Al2O3 composition.
doi_str_mv 10.1007/s40032-024-01064-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085226297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085226297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185w-9e32c5822f7c3448c8148dd6bba4b8653bf4478d8c0e36bfca92a3cc84a9a3963</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVNAf4GSJCxxCHb_iHKsIKFIrEJSz5ThO6yqJi52qSv-Bf8YlCG6c9jUzuztRdJXAuwTCdOIJhBjFEJEYJpCReH8SjRCiMIaU4tPfnNDzaOz9BkKYpIygLBtFn_laOqk67cxBdsa2QLYlWGi1lq1RsgZL7TvTroCtwKwvnDkOu9DPbbO13nTaH0fTeteY1uyakNW2BzdTTNlkvkD0Frxq01bWKV2CogcLo5yN38whlLl2sjEKvEjXGVVrfxmdVbL2evwTL6L3h_tlPovnz49P-XQeq4TTfZxpjBTlCFWpwoRwxRPCy5IVhSQFZxQXFSEpL7mCGrOiUjJDEivFicwkzhi-iK4H3a2zH7vwodjYnWvDSoEhpwgxlKUBhQZUuNh7pyuxdaaRrhcJFEfnxeC8CM6Lb-fFPpDwQPIB3K60-5P-h_UF0LOGuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085226297</pqid></control><display><type>article</type><title>Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles</title><source>Springer Link</source><creator>Sarvani, Rahamthulla Khan ; Mohinoddin, Mohd ; Ramakrishna, L. Siva</creator><creatorcontrib>Sarvani, Rahamthulla Khan ; Mohinoddin, Mohd ; Ramakrishna, L. Siva</creatorcontrib><description>A356/LM25 aluminum casting alloys are widely used in various aerospace, automobile, and engineering applications due to their high strength-to-weight ratio. With the growing demand for lightweight and high-strength components, aluminum matrix composites have emerged as promising materials for many engineering applications. In this study, we fabricated hybrid composites of A356/LM25 alloy reinforced with micro-sized ceramic particles, including ZrO 2 , Al 2 O 3 , SiC, MgO, and Gr particulates, with different weight percentages (1, 3, and 5%), using the stir casting method. To analyze the composites’ morphology and the distribution of reinforcement, we used Scanning Electron Microscope (SEM) combined with Energy Dispersive X-ray (EDX) Spectroscopy at varying magnification levels. We also utilized X-Ray Diffraction (XRD) technique to examine the material powder’s crystalline or amorphous nature. Additionally, we conducted a tensile test to determine the tensile strength and a Brinell hardness test to measure the hardness of the alloy composite. We achieved the highest tensile strength of 305.7 MPa for the LM25 + 1%MgO + 3%SiC composition, while the highest hardness of 96.95 BHN was obtained for the LM25 + 5%Al2O3 composition.</description><identifier>ISSN: 2250-0545</identifier><identifier>EISSN: 2250-0553</identifier><identifier>DOI: 10.1007/s40032-024-01064-w</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Aerospace engineering ; Aerospace Technology and Astronautics ; Alloys ; Aluminum ; Aluminum base alloys ; Aluminum matrix composites ; Aluminum oxide ; Amorphous alloys ; Amorphous materials ; Brinell hardness tests ; Casting ; Casting alloys ; Composition ; Energy distribution ; Engineering ; High strength alloys ; Hybrid composites ; Industrial and Production Engineering ; Magnesium oxide ; Mechanical Engineering ; Mechanical properties ; Mechanical tests ; Original Contribution ; Particulate composites ; Particulates ; Silicon carbide ; Strength to weight ratio ; Tensile strength ; Tensile tests ; Weight reduction ; Zirconium dioxide</subject><ispartof>Journal of the Institution of Engineers (India) Series C, 2024, Vol.105 (3), p.457-470</ispartof><rights>The Institution of Engineers (India) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185w-9e32c5822f7c3448c8148dd6bba4b8653bf4478d8c0e36bfca92a3cc84a9a3963</cites><orcidid>0000-0002-7272-1830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sarvani, Rahamthulla Khan</creatorcontrib><creatorcontrib>Mohinoddin, Mohd</creatorcontrib><creatorcontrib>Ramakrishna, L. Siva</creatorcontrib><title>Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles</title><title>Journal of the Institution of Engineers (India) Series C</title><addtitle>J. Inst. Eng. India Ser. C</addtitle><description>A356/LM25 aluminum casting alloys are widely used in various aerospace, automobile, and engineering applications due to their high strength-to-weight ratio. With the growing demand for lightweight and high-strength components, aluminum matrix composites have emerged as promising materials for many engineering applications. In this study, we fabricated hybrid composites of A356/LM25 alloy reinforced with micro-sized ceramic particles, including ZrO 2 , Al 2 O 3 , SiC, MgO, and Gr particulates, with different weight percentages (1, 3, and 5%), using the stir casting method. To analyze the composites’ morphology and the distribution of reinforcement, we used Scanning Electron Microscope (SEM) combined with Energy Dispersive X-ray (EDX) Spectroscopy at varying magnification levels. We also utilized X-Ray Diffraction (XRD) technique to examine the material powder’s crystalline or amorphous nature. Additionally, we conducted a tensile test to determine the tensile strength and a Brinell hardness test to measure the hardness of the alloy composite. We achieved the highest tensile strength of 305.7 MPa for the LM25 + 1%MgO + 3%SiC composition, while the highest hardness of 96.95 BHN was obtained for the LM25 + 5%Al2O3 composition.</description><subject>Aerospace engineering</subject><subject>Aerospace Technology and Astronautics</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum matrix composites</subject><subject>Aluminum oxide</subject><subject>Amorphous alloys</subject><subject>Amorphous materials</subject><subject>Brinell hardness tests</subject><subject>Casting</subject><subject>Casting alloys</subject><subject>Composition</subject><subject>Energy distribution</subject><subject>Engineering</subject><subject>High strength alloys</subject><subject>Hybrid composites</subject><subject>Industrial and Production Engineering</subject><subject>Magnesium oxide</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Original Contribution</subject><subject>Particulate composites</subject><subject>Particulates</subject><subject>Silicon carbide</subject><subject>Strength to weight ratio</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Weight reduction</subject><subject>Zirconium dioxide</subject><issn>2250-0545</issn><issn>2250-0553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIVNAf4GSJCxxCHb_iHKsIKFIrEJSz5ThO6yqJi52qSv-Bf8YlCG6c9jUzuztRdJXAuwTCdOIJhBjFEJEYJpCReH8SjRCiMIaU4tPfnNDzaOz9BkKYpIygLBtFn_laOqk67cxBdsa2QLYlWGi1lq1RsgZL7TvTroCtwKwvnDkOu9DPbbO13nTaH0fTeteY1uyakNW2BzdTTNlkvkD0Frxq01bWKV2CogcLo5yN38whlLl2sjEKvEjXGVVrfxmdVbL2evwTL6L3h_tlPovnz49P-XQeq4TTfZxpjBTlCFWpwoRwxRPCy5IVhSQFZxQXFSEpL7mCGrOiUjJDEivFicwkzhi-iK4H3a2zH7vwodjYnWvDSoEhpwgxlKUBhQZUuNh7pyuxdaaRrhcJFEfnxeC8CM6Lb-fFPpDwQPIB3K60-5P-h_UF0LOGuA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sarvani, Rahamthulla Khan</creator><creator>Mohinoddin, Mohd</creator><creator>Ramakrishna, L. Siva</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7272-1830</orcidid></search><sort><creationdate>2024</creationdate><title>Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles</title><author>Sarvani, Rahamthulla Khan ; Mohinoddin, Mohd ; Ramakrishna, L. Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185w-9e32c5822f7c3448c8148dd6bba4b8653bf4478d8c0e36bfca92a3cc84a9a3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace engineering</topic><topic>Aerospace Technology and Astronautics</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum matrix composites</topic><topic>Aluminum oxide</topic><topic>Amorphous alloys</topic><topic>Amorphous materials</topic><topic>Brinell hardness tests</topic><topic>Casting</topic><topic>Casting alloys</topic><topic>Composition</topic><topic>Energy distribution</topic><topic>Engineering</topic><topic>High strength alloys</topic><topic>Hybrid composites</topic><topic>Industrial and Production Engineering</topic><topic>Magnesium oxide</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Original Contribution</topic><topic>Particulate composites</topic><topic>Particulates</topic><topic>Silicon carbide</topic><topic>Strength to weight ratio</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Weight reduction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarvani, Rahamthulla Khan</creatorcontrib><creatorcontrib>Mohinoddin, Mohd</creatorcontrib><creatorcontrib>Ramakrishna, L. Siva</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Institution of Engineers (India) Series C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarvani, Rahamthulla Khan</au><au>Mohinoddin, Mohd</au><au>Ramakrishna, L. Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles</atitle><jtitle>Journal of the Institution of Engineers (India) Series C</jtitle><stitle>J. Inst. Eng. India Ser. C</stitle><date>2024</date><risdate>2024</risdate><volume>105</volume><issue>3</issue><spage>457</spage><epage>470</epage><pages>457-470</pages><issn>2250-0545</issn><eissn>2250-0553</eissn><abstract>A356/LM25 aluminum casting alloys are widely used in various aerospace, automobile, and engineering applications due to their high strength-to-weight ratio. With the growing demand for lightweight and high-strength components, aluminum matrix composites have emerged as promising materials for many engineering applications. In this study, we fabricated hybrid composites of A356/LM25 alloy reinforced with micro-sized ceramic particles, including ZrO 2 , Al 2 O 3 , SiC, MgO, and Gr particulates, with different weight percentages (1, 3, and 5%), using the stir casting method. To analyze the composites’ morphology and the distribution of reinforcement, we used Scanning Electron Microscope (SEM) combined with Energy Dispersive X-ray (EDX) Spectroscopy at varying magnification levels. We also utilized X-Ray Diffraction (XRD) technique to examine the material powder’s crystalline or amorphous nature. Additionally, we conducted a tensile test to determine the tensile strength and a Brinell hardness test to measure the hardness of the alloy composite. We achieved the highest tensile strength of 305.7 MPa for the LM25 + 1%MgO + 3%SiC composition, while the highest hardness of 96.95 BHN was obtained for the LM25 + 5%Al2O3 composition.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40032-024-01064-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7272-1830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2250-0545
ispartof Journal of the Institution of Engineers (India) Series C, 2024, Vol.105 (3), p.457-470
issn 2250-0545
2250-0553
language eng
recordid cdi_proquest_journals_3085226297
source Springer Link
subjects Aerospace engineering
Aerospace Technology and Astronautics
Alloys
Aluminum
Aluminum base alloys
Aluminum matrix composites
Aluminum oxide
Amorphous alloys
Amorphous materials
Brinell hardness tests
Casting
Casting alloys
Composition
Energy distribution
Engineering
High strength alloys
Hybrid composites
Industrial and Production Engineering
Magnesium oxide
Mechanical Engineering
Mechanical properties
Mechanical tests
Original Contribution
Particulate composites
Particulates
Silicon carbide
Strength to weight ratio
Tensile strength
Tensile tests
Weight reduction
Zirconium dioxide
title Characterization and Mechanical Testing of Hybrid Metal Composites of Aluminium Alloy (A356/LM25) Reinforced by Micro-Sized Ceramic Particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Mechanical%20Testing%20of%20Hybrid%20Metal%20Composites%20of%20Aluminium%20Alloy%20(A356/LM25)%20Reinforced%20by%20Micro-Sized%20Ceramic%20Particles&rft.jtitle=Journal%20of%20the%20Institution%20of%20Engineers%20(India)%20Series%20C&rft.au=Sarvani,%20Rahamthulla%20Khan&rft.date=2024&rft.volume=105&rft.issue=3&rft.spage=457&rft.epage=470&rft.pages=457-470&rft.issn=2250-0545&rft.eissn=2250-0553&rft_id=info:doi/10.1007/s40032-024-01064-w&rft_dat=%3Cproquest_cross%3E3085226297%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185w-9e32c5822f7c3448c8148dd6bba4b8653bf4478d8c0e36bfca92a3cc84a9a3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085226297&rft_id=info:pmid/&rfr_iscdi=true