Loading…
VoxSim: A perceptual voice similarity dataset
This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of e...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ahn, Junseok Kim, Youkyum Choi, Yeunju Kwak, Doyeop Ji-Hoon, Kim Mun, Seongkyu Joon Son Chung |
description | This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3085747781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085747781</sourcerecordid><originalsourceid>FETCH-proquest_journals_30857477813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDcuvCM7MtVJwVChILUpOLSgpTcxRKMvPTE5VKM7MzcxJLMosqVRISSxJLE4t4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDC1NzE3NzC0Nj4lQBALcnMg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085747781</pqid></control><display><type>article</type><title>VoxSim: A perceptual voice similarity dataset</title><source>Publicly Available Content (ProQuest)</source><creator>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</creator><creatorcontrib>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</creatorcontrib><description>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Prediction models ; Predictions ; Similarity ; Speech recognition</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3085747781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ahn, Junseok</creatorcontrib><creatorcontrib>Kim, Youkyum</creatorcontrib><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Kwak, Doyeop</creatorcontrib><creatorcontrib>Ji-Hoon, Kim</creatorcontrib><creatorcontrib>Mun, Seongkyu</creatorcontrib><creatorcontrib>Joon Son Chung</creatorcontrib><title>VoxSim: A perceptual voice similarity dataset</title><title>arXiv.org</title><description>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</description><subject>Datasets</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Similarity</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDcuvCM7MtVJwVChILUpOLSgpTcxRKMvPTE5VKM7MzcxJLMosqVRISSxJLE4t4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDC1NzE3NzC0Nj4lQBALcnMg8</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Ahn, Junseok</creator><creator>Kim, Youkyum</creator><creator>Choi, Yeunju</creator><creator>Kwak, Doyeop</creator><creator>Ji-Hoon, Kim</creator><creator>Mun, Seongkyu</creator><creator>Joon Son Chung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240726</creationdate><title>VoxSim: A perceptual voice similarity dataset</title><author>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30857477813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Similarity</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Junseok</creatorcontrib><creatorcontrib>Kim, Youkyum</creatorcontrib><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Kwak, Doyeop</creatorcontrib><creatorcontrib>Ji-Hoon, Kim</creatorcontrib><creatorcontrib>Mun, Seongkyu</creatorcontrib><creatorcontrib>Joon Son Chung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Junseok</au><au>Kim, Youkyum</au><au>Choi, Yeunju</au><au>Kwak, Doyeop</au><au>Ji-Hoon, Kim</au><au>Mun, Seongkyu</au><au>Joon Son Chung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VoxSim: A perceptual voice similarity dataset</atitle><jtitle>arXiv.org</jtitle><date>2024-07-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3085747781 |
source | Publicly Available Content (ProQuest) |
subjects | Datasets Prediction models Predictions Similarity Speech recognition |
title | VoxSim: A perceptual voice similarity dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VoxSim:%20A%20perceptual%20voice%20similarity%20dataset&rft.jtitle=arXiv.org&rft.au=Ahn,%20Junseok&rft.date=2024-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3085747781%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30857477813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085747781&rft_id=info:pmid/&rfr_iscdi=true |