Loading…

VoxSim: A perceptual voice similarity dataset

This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of e...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Ahn, Junseok, Kim, Youkyum, Choi, Yeunju, Kwak, Doyeop, Ji-Hoon, Kim, Mun, Seongkyu, Joon Son Chung
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ahn, Junseok
Kim, Youkyum
Choi, Yeunju
Kwak, Doyeop
Ji-Hoon, Kim
Mun, Seongkyu
Joon Son Chung
description This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3085747781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085747781</sourcerecordid><originalsourceid>FETCH-proquest_journals_30857477813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDcuvCM7MtVJwVChILUpOLSgpTcxRKMvPTE5VKM7MzcxJLMosqVRISSxJLE4t4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDC1NzE3NzC0Nj4lQBALcnMg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085747781</pqid></control><display><type>article</type><title>VoxSim: A perceptual voice similarity dataset</title><source>Publicly Available Content (ProQuest)</source><creator>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</creator><creatorcontrib>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</creatorcontrib><description>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Prediction models ; Predictions ; Similarity ; Speech recognition</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3085747781?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ahn, Junseok</creatorcontrib><creatorcontrib>Kim, Youkyum</creatorcontrib><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Kwak, Doyeop</creatorcontrib><creatorcontrib>Ji-Hoon, Kim</creatorcontrib><creatorcontrib>Mun, Seongkyu</creatorcontrib><creatorcontrib>Joon Son Chung</creatorcontrib><title>VoxSim: A perceptual voice similarity dataset</title><title>arXiv.org</title><description>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</description><subject>Datasets</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Similarity</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDcuvCM7MtVJwVChILUpOLSgpTcxRKMvPTE5VKM7MzcxJLMosqVRISSxJLE4t4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDC1NzE3NzC0Nj4lQBALcnMg8</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Ahn, Junseok</creator><creator>Kim, Youkyum</creator><creator>Choi, Yeunju</creator><creator>Kwak, Doyeop</creator><creator>Ji-Hoon, Kim</creator><creator>Mun, Seongkyu</creator><creator>Joon Son Chung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240726</creationdate><title>VoxSim: A perceptual voice similarity dataset</title><author>Ahn, Junseok ; Kim, Youkyum ; Choi, Yeunju ; Kwak, Doyeop ; Ji-Hoon, Kim ; Mun, Seongkyu ; Joon Son Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30857477813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Similarity</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Junseok</creatorcontrib><creatorcontrib>Kim, Youkyum</creatorcontrib><creatorcontrib>Choi, Yeunju</creatorcontrib><creatorcontrib>Kwak, Doyeop</creatorcontrib><creatorcontrib>Ji-Hoon, Kim</creatorcontrib><creatorcontrib>Mun, Seongkyu</creatorcontrib><creatorcontrib>Joon Son Chung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Junseok</au><au>Kim, Youkyum</au><au>Choi, Yeunju</au><au>Kwak, Doyeop</au><au>Ji-Hoon, Kim</au><au>Mun, Seongkyu</au><au>Joon Son Chung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VoxSim: A perceptual voice similarity dataset</atitle><jtitle>arXiv.org</jtitle><date>2024-07-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3085747781
source Publicly Available Content (ProQuest)
subjects Datasets
Prediction models
Predictions
Similarity
Speech recognition
title VoxSim: A perceptual voice similarity dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VoxSim:%20A%20perceptual%20voice%20similarity%20dataset&rft.jtitle=arXiv.org&rft.au=Ahn,%20Junseok&rft.date=2024-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3085747781%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30857477813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085747781&rft_id=info:pmid/&rfr_iscdi=true