Loading…
Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery
Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite...
Saved in:
Published in: | International journal of remote sensing 2024-08, Vol.45 (16), p.5425-5442 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513 |
container_end_page | 5442 |
container_issue | 16 |
container_start_page | 5425 |
container_title | International journal of remote sensing |
container_volume | 45 |
creator | Chemura, Abel Lu, Shaoqing Skidmore, Andrew K. Duporge, Isla Lee, Stephen J. Yu, Zhaoyang Ngene, Shadrack Wang, Tiejun |
description | Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p |
doi_str_mv | 10.1080/01431161.2024.2377230 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085937772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085937772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-BCHgOWv-tE17UxZdhRUveg5pmmyzdpuapEi_vSm7Xj0MMzDvvRl-ANwSvCK4xPeYZIyQgqwoptmKMs4pw2dgQVhRoLzC5BwsZg2aRZfgKoQ9xrjgOV-A6U0Og-130BmDvJMNjF6qrwBl36SyB9nBQcY2QNvDwbuoVdRp47UMcAyzs7W7FnkdXDdG63q40e5p0ogkX69a7w4yWgWDjLrrbNQwZe60n67BhZFd0DenvgSfz08f6xe0fd-8rh-3SNGCRcQa1hjKKTdVyUzDyqapa5lrLjOq0pzxnMi6ViXLq4pJrjjJSlNlhFSKlDlhS3B3zE3ff486RLF3o-_TScFwmVcJV-K1BPlRpbwLwWsjBp8e9ZMgWMyUxR9lMVMWJ8rJ93D02d44f5A_zneNiHLqnDc-AbDpzP8Rv-eLhRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085937772</pqid></control><display><type>article</type><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><source>Taylor and Francis Science and Technology Collection</source><creator>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</creator><creatorcontrib>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</creatorcontrib><description>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p < 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431161.2024.2377230</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>African savannas ; All terrain vehicles ; Feature extraction ; Formability ; Fuzzy logic ; Geographical information systems ; High resolution ; human impact ; Image resolution ; Mapping ; Off road vehicles ; Protected areas ; Redundancy ; Remote sensing ; Roads ; Satellite imagery ; Shape ; tourism ; Tracks (paths) ; wildlife habitat</subject><ispartof>International journal of remote sensing, 2024-08, Vol.45 (16), p.5425-5442</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</cites><orcidid>0000-0002-1138-8464 ; 0000-0002-7446-8429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chemura, Abel</creatorcontrib><creatorcontrib>Lu, Shaoqing</creatorcontrib><creatorcontrib>Skidmore, Andrew K.</creatorcontrib><creatorcontrib>Duporge, Isla</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><creatorcontrib>Yu, Zhaoyang</creatorcontrib><creatorcontrib>Ngene, Shadrack</creatorcontrib><creatorcontrib>Wang, Tiejun</creatorcontrib><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><title>International journal of remote sensing</title><description>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p < 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</description><subject>African savannas</subject><subject>All terrain vehicles</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Fuzzy logic</subject><subject>Geographical information systems</subject><subject>High resolution</subject><subject>human impact</subject><subject>Image resolution</subject><subject>Mapping</subject><subject>Off road vehicles</subject><subject>Protected areas</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>Roads</subject><subject>Satellite imagery</subject><subject>Shape</subject><subject>tourism</subject><subject>Tracks (paths)</subject><subject>wildlife habitat</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE9LxDAQxYMouK5-BCHgOWv-tE17UxZdhRUveg5pmmyzdpuapEi_vSm7Xj0MMzDvvRl-ANwSvCK4xPeYZIyQgqwoptmKMs4pw2dgQVhRoLzC5BwsZg2aRZfgKoQ9xrjgOV-A6U0Og-130BmDvJMNjF6qrwBl36SyB9nBQcY2QNvDwbuoVdRp47UMcAyzs7W7FnkdXDdG63q40e5p0ogkX69a7w4yWgWDjLrrbNQwZe60n67BhZFd0DenvgSfz08f6xe0fd-8rh-3SNGCRcQa1hjKKTdVyUzDyqapa5lrLjOq0pzxnMi6ViXLq4pJrjjJSlNlhFSKlDlhS3B3zE3ff486RLF3o-_TScFwmVcJV-K1BPlRpbwLwWsjBp8e9ZMgWMyUxR9lMVMWJ8rJ93D02d44f5A_zneNiHLqnDc-AbDpzP8Rv-eLhRo</recordid><startdate>20240817</startdate><enddate>20240817</enddate><creator>Chemura, Abel</creator><creator>Lu, Shaoqing</creator><creator>Skidmore, Andrew K.</creator><creator>Duporge, Isla</creator><creator>Lee, Stephen J.</creator><creator>Yu, Zhaoyang</creator><creator>Ngene, Shadrack</creator><creator>Wang, Tiejun</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1138-8464</orcidid><orcidid>https://orcid.org/0000-0002-7446-8429</orcidid></search><sort><creationdate>20240817</creationdate><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><author>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>African savannas</topic><topic>All terrain vehicles</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Fuzzy logic</topic><topic>Geographical information systems</topic><topic>High resolution</topic><topic>human impact</topic><topic>Image resolution</topic><topic>Mapping</topic><topic>Off road vehicles</topic><topic>Protected areas</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>Roads</topic><topic>Satellite imagery</topic><topic>Shape</topic><topic>tourism</topic><topic>Tracks (paths)</topic><topic>wildlife habitat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chemura, Abel</creatorcontrib><creatorcontrib>Lu, Shaoqing</creatorcontrib><creatorcontrib>Skidmore, Andrew K.</creatorcontrib><creatorcontrib>Duporge, Isla</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><creatorcontrib>Yu, Zhaoyang</creatorcontrib><creatorcontrib>Ngene, Shadrack</creatorcontrib><creatorcontrib>Wang, Tiejun</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chemura, Abel</au><au>Lu, Shaoqing</au><au>Skidmore, Andrew K.</au><au>Duporge, Isla</au><au>Lee, Stephen J.</au><au>Yu, Zhaoyang</au><au>Ngene, Shadrack</au><au>Wang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</atitle><jtitle>International journal of remote sensing</jtitle><date>2024-08-17</date><risdate>2024</risdate><volume>45</volume><issue>16</issue><spage>5425</spage><epage>5442</epage><pages>5425-5442</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><abstract>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p < 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/01431161.2024.2377230</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1138-8464</orcidid><orcidid>https://orcid.org/0000-0002-7446-8429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2024-08, Vol.45 (16), p.5425-5442 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_proquest_journals_3085937772 |
source | Taylor and Francis Science and Technology Collection |
subjects | African savannas All terrain vehicles Feature extraction Formability Fuzzy logic Geographical information systems High resolution human impact Image resolution Mapping Off road vehicles Protected areas Redundancy Remote sensing Roads Satellite imagery Shape tourism Tracks (paths) wildlife habitat |
title | Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20off-road%20tracks%20and%20animal%20paths%20in%20protected%20areas%20using%20high-resolution%20GeoEye-1%20panchromatic%20satellite%20imagery&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Chemura,%20Abel&rft.date=2024-08-17&rft.volume=45&rft.issue=16&rft.spage=5425&rft.epage=5442&rft.pages=5425-5442&rft.issn=0143-1161&rft.eissn=1366-5901&rft_id=info:doi/10.1080/01431161.2024.2377230&rft_dat=%3Cproquest_cross%3E3085937772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085937772&rft_id=info:pmid/&rfr_iscdi=true |