Loading…

Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery

Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2024-08, Vol.45 (16), p.5425-5442
Main Authors: Chemura, Abel, Lu, Shaoqing, Skidmore, Andrew K., Duporge, Isla, Lee, Stephen J., Yu, Zhaoyang, Ngene, Shadrack, Wang, Tiejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513
container_end_page 5442
container_issue 16
container_start_page 5425
container_title International journal of remote sensing
container_volume 45
creator Chemura, Abel
Lu, Shaoqing
Skidmore, Andrew K.
Duporge, Isla
Lee, Stephen J.
Yu, Zhaoyang
Ngene, Shadrack
Wang, Tiejun
description Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p 
doi_str_mv 10.1080/01431161.2024.2377230
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085937772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085937772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-BCHgOWv-tE17UxZdhRUveg5pmmyzdpuapEi_vSm7Xj0MMzDvvRl-ANwSvCK4xPeYZIyQgqwoptmKMs4pw2dgQVhRoLzC5BwsZg2aRZfgKoQ9xrjgOV-A6U0Og-130BmDvJMNjF6qrwBl36SyB9nBQcY2QNvDwbuoVdRp47UMcAyzs7W7FnkdXDdG63q40e5p0ogkX69a7w4yWgWDjLrrbNQwZe60n67BhZFd0DenvgSfz08f6xe0fd-8rh-3SNGCRcQa1hjKKTdVyUzDyqapa5lrLjOq0pzxnMi6ViXLq4pJrjjJSlNlhFSKlDlhS3B3zE3ff486RLF3o-_TScFwmVcJV-K1BPlRpbwLwWsjBp8e9ZMgWMyUxR9lMVMWJ8rJ93D02d44f5A_zneNiHLqnDc-AbDpzP8Rv-eLhRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085937772</pqid></control><display><type>article</type><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><source>Taylor and Francis Science and Technology Collection</source><creator>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</creator><creatorcontrib>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</creatorcontrib><description>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p &lt; 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431161.2024.2377230</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>African savannas ; All terrain vehicles ; Feature extraction ; Formability ; Fuzzy logic ; Geographical information systems ; High resolution ; human impact ; Image resolution ; Mapping ; Off road vehicles ; Protected areas ; Redundancy ; Remote sensing ; Roads ; Satellite imagery ; Shape ; tourism ; Tracks (paths) ; wildlife habitat</subject><ispartof>International journal of remote sensing, 2024-08, Vol.45 (16), p.5425-5442</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</cites><orcidid>0000-0002-1138-8464 ; 0000-0002-7446-8429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chemura, Abel</creatorcontrib><creatorcontrib>Lu, Shaoqing</creatorcontrib><creatorcontrib>Skidmore, Andrew K.</creatorcontrib><creatorcontrib>Duporge, Isla</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><creatorcontrib>Yu, Zhaoyang</creatorcontrib><creatorcontrib>Ngene, Shadrack</creatorcontrib><creatorcontrib>Wang, Tiejun</creatorcontrib><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><title>International journal of remote sensing</title><description>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p &lt; 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</description><subject>African savannas</subject><subject>All terrain vehicles</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Fuzzy logic</subject><subject>Geographical information systems</subject><subject>High resolution</subject><subject>human impact</subject><subject>Image resolution</subject><subject>Mapping</subject><subject>Off road vehicles</subject><subject>Protected areas</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>Roads</subject><subject>Satellite imagery</subject><subject>Shape</subject><subject>tourism</subject><subject>Tracks (paths)</subject><subject>wildlife habitat</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE9LxDAQxYMouK5-BCHgOWv-tE17UxZdhRUveg5pmmyzdpuapEi_vSm7Xj0MMzDvvRl-ANwSvCK4xPeYZIyQgqwoptmKMs4pw2dgQVhRoLzC5BwsZg2aRZfgKoQ9xrjgOV-A6U0Og-130BmDvJMNjF6qrwBl36SyB9nBQcY2QNvDwbuoVdRp47UMcAyzs7W7FnkdXDdG63q40e5p0ogkX69a7w4yWgWDjLrrbNQwZe60n67BhZFd0DenvgSfz08f6xe0fd-8rh-3SNGCRcQa1hjKKTdVyUzDyqapa5lrLjOq0pzxnMi6ViXLq4pJrjjJSlNlhFSKlDlhS3B3zE3ff486RLF3o-_TScFwmVcJV-K1BPlRpbwLwWsjBp8e9ZMgWMyUxR9lMVMWJ8rJ93D02d44f5A_zneNiHLqnDc-AbDpzP8Rv-eLhRo</recordid><startdate>20240817</startdate><enddate>20240817</enddate><creator>Chemura, Abel</creator><creator>Lu, Shaoqing</creator><creator>Skidmore, Andrew K.</creator><creator>Duporge, Isla</creator><creator>Lee, Stephen J.</creator><creator>Yu, Zhaoyang</creator><creator>Ngene, Shadrack</creator><creator>Wang, Tiejun</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1138-8464</orcidid><orcidid>https://orcid.org/0000-0002-7446-8429</orcidid></search><sort><creationdate>20240817</creationdate><title>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</title><author>Chemura, Abel ; Lu, Shaoqing ; Skidmore, Andrew K. ; Duporge, Isla ; Lee, Stephen J. ; Yu, Zhaoyang ; Ngene, Shadrack ; Wang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>African savannas</topic><topic>All terrain vehicles</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Fuzzy logic</topic><topic>Geographical information systems</topic><topic>High resolution</topic><topic>human impact</topic><topic>Image resolution</topic><topic>Mapping</topic><topic>Off road vehicles</topic><topic>Protected areas</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>Roads</topic><topic>Satellite imagery</topic><topic>Shape</topic><topic>tourism</topic><topic>Tracks (paths)</topic><topic>wildlife habitat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chemura, Abel</creatorcontrib><creatorcontrib>Lu, Shaoqing</creatorcontrib><creatorcontrib>Skidmore, Andrew K.</creatorcontrib><creatorcontrib>Duporge, Isla</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><creatorcontrib>Yu, Zhaoyang</creatorcontrib><creatorcontrib>Ngene, Shadrack</creatorcontrib><creatorcontrib>Wang, Tiejun</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chemura, Abel</au><au>Lu, Shaoqing</au><au>Skidmore, Andrew K.</au><au>Duporge, Isla</au><au>Lee, Stephen J.</au><au>Yu, Zhaoyang</au><au>Ngene, Shadrack</au><au>Wang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery</atitle><jtitle>International journal of remote sensing</jtitle><date>2024-08-17</date><risdate>2024</risdate><volume>45</volume><issue>16</issue><spage>5425</spage><epage>5442</epage><pages>5425-5442</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><abstract>Off-road driving activities are common in many protected areas. This study aimed at applying a curvelet-based approach for the automatic extraction, mapping and separation of off-road tracks and animal paths in Masai Mara National Reserve, Kenya, using high-resolution GeoEye-1 panchromatic satellite imagery (50 cm). A novel hybrid remote sensing-GIS method comprising three main blocks is proposed: (1) extracting the high-contrast curvilinear feature from curvelet magnitudes derived from the finer scale of curvelet coefficient; (2) extracting the low-contrast curvilinear feature from coarser scale curvelets and refine the shape by deformable active contour (Snake), and (3) categorizing the extracted curvilinear feature into vehicle tracks and animal paths by a fuzzy logic inference system. Results from quantification of extraction and categorization performance of the trails were 77.5% for completeness, 89.2% for correctness, and 4.5% for redundancy, with an overall accuracy of 79.5%. Using grid matching, we find a high correlation between off-road vehicle tracks and animal paths in the area (r = 0.75, p &lt; 0.05) indicating co-occurrence of these two types of trails. The proposed approach provides a basis for large-scale mapping and monitoring of off-road tracks and animal paths in the African savanna from space.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431161.2024.2377230</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1138-8464</orcidid><orcidid>https://orcid.org/0000-0002-7446-8429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-1161
ispartof International journal of remote sensing, 2024-08, Vol.45 (16), p.5425-5442
issn 0143-1161
1366-5901
language eng
recordid cdi_proquest_journals_3085937772
source Taylor and Francis Science and Technology Collection
subjects African savannas
All terrain vehicles
Feature extraction
Formability
Fuzzy logic
Geographical information systems
High resolution
human impact
Image resolution
Mapping
Off road vehicles
Protected areas
Redundancy
Remote sensing
Roads
Satellite imagery
Shape
tourism
Tracks (paths)
wildlife habitat
title Mapping off-road tracks and animal paths in protected areas using high-resolution GeoEye-1 panchromatic satellite imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20off-road%20tracks%20and%20animal%20paths%20in%20protected%20areas%20using%20high-resolution%20GeoEye-1%20panchromatic%20satellite%20imagery&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Chemura,%20Abel&rft.date=2024-08-17&rft.volume=45&rft.issue=16&rft.spage=5425&rft.epage=5442&rft.pages=5425-5442&rft.issn=0143-1161&rft.eissn=1366-5901&rft_id=info:doi/10.1080/01431161.2024.2377230&rft_dat=%3Cproquest_cross%3E3085937772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-3d3df2727f983fd38ddbba5e7a42cddb4751abbc835993a7c7148f94119c18513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085937772&rft_id=info:pmid/&rfr_iscdi=true