Loading…
Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version
The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the ang...
Saved in:
Published in: | General relativity and gravitation 2024-08, Vol.56 (8), Article 90 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | General relativity and gravitation |
container_volume | 56 |
creator | Prihadi, Hadyan Luthfan Zen, Freddy Permana Dwiputra, Donny Ariwahjoedi, Seramika |
description | The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum
L
of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by
κ
=
2
π
T
H
/
(
1
-
μ
L
)
. The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges. |
doi_str_mv | 10.1007/s10714-024-03275-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086030435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086030435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGf3GyrCr-RCUWwNpyYqdJCXGxkyK64g7ckJPgEiR2LEajmXnfG-khdErgnADIi0BAEp4AjcWoFMl2D02IkDTJBaP7aAIAJJESyCE6CmEVx1ymcoLswpW6bbbW4LLWLmAzWNw77F2v-6Zb4lC78hm_6Y0NuOnwnfX-6-NzZh5w0ep4qV0bL7ozuK9t4_HQ9l6HddN1O3pjfWhcd4wOKt0Ge_Lbp-jp6vJxfpMs7q9v57NFUlKAPtFCUF1VxBSMaSM08Co1wlJZGM5zXmQMaJFrzkVGcl4ZFpecZlSS3FSMpGyKzkbftXevgw29WrnBd_GlYpClwIAzEVV0VJXeheBtpda-edH-XRFQuzjVGKeKcaqfONU2QmyEQhR3S-v_rP-hvgFfEXme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086030435</pqid></control><display><type>article</type><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><source>Springer Link</source><creator>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</creator><creatorcontrib>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</creatorcontrib><description>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum
L
of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by
κ
=
2
π
T
H
/
(
1
-
μ
L
)
. The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-024-03275-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Angular velocity ; Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Differential Geometry ; Entanglement ; Liapunov exponents ; Light speed ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Rotation ; Shock waves ; Theoretical ; Velocity</subject><ispartof>General relativity and gravitation, 2024-08, Vol.56 (8), Article 90</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Prihadi, Hadyan Luthfan</creatorcontrib><creatorcontrib>Zen, Freddy Permana</creatorcontrib><creatorcontrib>Dwiputra, Donny</creatorcontrib><creatorcontrib>Ariwahjoedi, Seramika</creatorcontrib><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum
L
of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by
κ
=
2
π
T
H
/
(
1
-
μ
L
)
. The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</description><subject>Angular momentum</subject><subject>Angular velocity</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential Geometry</subject><subject>Entanglement</subject><subject>Liapunov exponents</subject><subject>Light speed</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rotation</subject><subject>Shock waves</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGf3GyrCr-RCUWwNpyYqdJCXGxkyK64g7ckJPgEiR2LEajmXnfG-khdErgnADIi0BAEp4AjcWoFMl2D02IkDTJBaP7aAIAJJESyCE6CmEVx1ymcoLswpW6bbbW4LLWLmAzWNw77F2v-6Zb4lC78hm_6Y0NuOnwnfX-6-NzZh5w0ep4qV0bL7ozuK9t4_HQ9l6HddN1O3pjfWhcd4wOKt0Ge_Lbp-jp6vJxfpMs7q9v57NFUlKAPtFCUF1VxBSMaSM08Co1wlJZGM5zXmQMaJFrzkVGcl4ZFpecZlSS3FSMpGyKzkbftXevgw29WrnBd_GlYpClwIAzEVV0VJXeheBtpda-edH-XRFQuzjVGKeKcaqfONU2QmyEQhR3S-v_rP-hvgFfEXme</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Prihadi, Hadyan Luthfan</creator><creator>Zen, Freddy Permana</creator><creator>Dwiputra, Donny</creator><creator>Ariwahjoedi, Seramika</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><author>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Angular velocity</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential Geometry</topic><topic>Entanglement</topic><topic>Liapunov exponents</topic><topic>Light speed</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rotation</topic><topic>Shock waves</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prihadi, Hadyan Luthfan</creatorcontrib><creatorcontrib>Zen, Freddy Permana</creatorcontrib><creatorcontrib>Dwiputra, Donny</creatorcontrib><creatorcontrib>Ariwahjoedi, Seramika</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prihadi, Hadyan Luthfan</au><au>Zen, Freddy Permana</au><au>Dwiputra, Donny</au><au>Ariwahjoedi, Seramika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>56</volume><issue>8</issue><artnum>90</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum
L
of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by
κ
=
2
π
T
H
/
(
1
-
μ
L
)
. The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-024-03275-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-7701 |
ispartof | General relativity and gravitation, 2024-08, Vol.56 (8), Article 90 |
issn | 0001-7701 1572-9532 |
language | eng |
recordid | cdi_proquest_journals_3086030435 |
source | Springer Link |
subjects | Angular momentum Angular velocity Astronomy Astrophysics and Cosmology Classical and Quantum Gravitation Differential Geometry Entanglement Liapunov exponents Light speed Mathematical and Computational Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Rotation Shock waves Theoretical Velocity |
title | Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20chaos%20due%20to%20rotating%20shock%20waves%20in%20Kerr%E2%80%93AdS%20black%20holes%20and%20their%20ultraspinning%20version&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Prihadi,%20Hadyan%20Luthfan&rft.date=2024-08-01&rft.volume=56&rft.issue=8&rft.artnum=90&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-024-03275-z&rft_dat=%3Cproquest_cross%3E3086030435%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086030435&rft_id=info:pmid/&rfr_iscdi=true |