Loading…

Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version

The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the ang...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2024-08, Vol.56 (8), Article 90
Main Authors: Prihadi, Hadyan Luthfan, Zen, Freddy Permana, Dwiputra, Donny, Ariwahjoedi, Seramika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163
container_end_page
container_issue 8
container_start_page
container_title General relativity and gravitation
container_volume 56
creator Prihadi, Hadyan Luthfan
Zen, Freddy Permana
Dwiputra, Donny
Ariwahjoedi, Seramika
description The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum L of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by κ = 2 π T H / ( 1 - μ L ) . The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.
doi_str_mv 10.1007/s10714-024-03275-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086030435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086030435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGf3GyrCr-RCUWwNpyYqdJCXGxkyK64g7ckJPgEiR2LEajmXnfG-khdErgnADIi0BAEp4AjcWoFMl2D02IkDTJBaP7aAIAJJESyCE6CmEVx1ymcoLswpW6bbbW4LLWLmAzWNw77F2v-6Zb4lC78hm_6Y0NuOnwnfX-6-NzZh5w0ep4qV0bL7ozuK9t4_HQ9l6HddN1O3pjfWhcd4wOKt0Ge_Lbp-jp6vJxfpMs7q9v57NFUlKAPtFCUF1VxBSMaSM08Co1wlJZGM5zXmQMaJFrzkVGcl4ZFpecZlSS3FSMpGyKzkbftXevgw29WrnBd_GlYpClwIAzEVV0VJXeheBtpda-edH-XRFQuzjVGKeKcaqfONU2QmyEQhR3S-v_rP-hvgFfEXme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086030435</pqid></control><display><type>article</type><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><source>Springer Link</source><creator>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</creator><creatorcontrib>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</creatorcontrib><description>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum L of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by κ = 2 π T H / ( 1 - μ L ) . The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-024-03275-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Angular momentum ; Angular velocity ; Astronomy ; Astrophysics and Cosmology ; Classical and Quantum Gravitation ; Differential Geometry ; Entanglement ; Liapunov exponents ; Light speed ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Rotation ; Shock waves ; Theoretical ; Velocity</subject><ispartof>General relativity and gravitation, 2024-08, Vol.56 (8), Article 90</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Prihadi, Hadyan Luthfan</creatorcontrib><creatorcontrib>Zen, Freddy Permana</creatorcontrib><creatorcontrib>Dwiputra, Donny</creatorcontrib><creatorcontrib>Ariwahjoedi, Seramika</creatorcontrib><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum L of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by κ = 2 π T H / ( 1 - μ L ) . The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</description><subject>Angular momentum</subject><subject>Angular velocity</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential Geometry</subject><subject>Entanglement</subject><subject>Liapunov exponents</subject><subject>Light speed</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rotation</subject><subject>Shock waves</subject><subject>Theoretical</subject><subject>Velocity</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWAfGf3GyrCr-RCUWwNpyYqdJCXGxkyK64g7ckJPgEiR2LEajmXnfG-khdErgnADIi0BAEp4AjcWoFMl2D02IkDTJBaP7aAIAJJESyCE6CmEVx1ymcoLswpW6bbbW4LLWLmAzWNw77F2v-6Zb4lC78hm_6Y0NuOnwnfX-6-NzZh5w0ep4qV0bL7ozuK9t4_HQ9l6HddN1O3pjfWhcd4wOKt0Ge_Lbp-jp6vJxfpMs7q9v57NFUlKAPtFCUF1VxBSMaSM08Co1wlJZGM5zXmQMaJFrzkVGcl4ZFpecZlSS3FSMpGyKzkbftXevgw29WrnBd_GlYpClwIAzEVV0VJXeheBtpda-edH-XRFQuzjVGKeKcaqfONU2QmyEQhR3S-v_rP-hvgFfEXme</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Prihadi, Hadyan Luthfan</creator><creator>Zen, Freddy Permana</creator><creator>Dwiputra, Donny</creator><creator>Ariwahjoedi, Seramika</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</title><author>Prihadi, Hadyan Luthfan ; Zen, Freddy Permana ; Dwiputra, Donny ; Ariwahjoedi, Seramika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Angular velocity</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential Geometry</topic><topic>Entanglement</topic><topic>Liapunov exponents</topic><topic>Light speed</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rotation</topic><topic>Shock waves</topic><topic>Theoretical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prihadi, Hadyan Luthfan</creatorcontrib><creatorcontrib>Zen, Freddy Permana</creatorcontrib><creatorcontrib>Dwiputra, Donny</creatorcontrib><creatorcontrib>Ariwahjoedi, Seramika</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prihadi, Hadyan Luthfan</au><au>Zen, Freddy Permana</au><au>Dwiputra, Donny</au><au>Ariwahjoedi, Seramika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>56</volume><issue>8</issue><artnum>90</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum L of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by κ = 2 π T H / ( 1 - μ L ) . The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-024-03275-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2024-08, Vol.56 (8), Article 90
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_3086030435
source Springer Link
subjects Angular momentum
Angular velocity
Astronomy
Astrophysics and Cosmology
Classical and Quantum Gravitation
Differential Geometry
Entanglement
Liapunov exponents
Light speed
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Rotation
Shock waves
Theoretical
Velocity
title Localized chaos due to rotating shock waves in Kerr–AdS black holes and their ultraspinning version
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20chaos%20due%20to%20rotating%20shock%20waves%20in%20Kerr%E2%80%93AdS%20black%20holes%20and%20their%20ultraspinning%20version&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Prihadi,%20Hadyan%20Luthfan&rft.date=2024-08-01&rft.volume=56&rft.issue=8&rft.artnum=90&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-024-03275-z&rft_dat=%3Cproquest_cross%3E3086030435%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-a552aff1db33ad5a04f6d5e27bd4494b8302b9a4458194fd34944282719df3163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086030435&rft_id=info:pmid/&rfr_iscdi=true