Loading…

Improving 2D Feature Representations by 3D-Aware Fine-Tuning

Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Yue, Yuanwen, Das, Anurag, Engelmann, Francis, Tang, Siyu, Lenssen, Jan Eric
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yue, Yuanwen
Das, Anurag
Engelmann, Francis
Tang, Siyu
Lenssen, Jan Eric
description Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3086142183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086142183</sourcerecordid><originalsourceid>FETCH-proquest_journals_30861421833</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8cwtKMovy8xLVzByUXBLTSwpLUpVCEotKEotTs0rSSzJzM8rVkiqVDB20XUsTwTKuWXmpeqGlOYBtfAwsKYl5hSn8kJpbgZlN9cQZw9doJGFpanFJfFZ-aVFeUCpeGMDCzNDEyNDC2Nj4lQBANJBNp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086142183</pqid></control><display><type>article</type><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</creator><creatorcontrib>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</creatorcontrib><description>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Representations ; Semantic segmentation ; Unstructured data</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3086142183?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yue, Yuanwen</creatorcontrib><creatorcontrib>Das, Anurag</creatorcontrib><creatorcontrib>Engelmann, Francis</creatorcontrib><creatorcontrib>Tang, Siyu</creatorcontrib><creatorcontrib>Lenssen, Jan Eric</creatorcontrib><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><title>arXiv.org</title><description>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</description><subject>Datasets</subject><subject>Representations</subject><subject>Semantic segmentation</subject><subject>Unstructured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8cwtKMovy8xLVzByUXBLTSwpLUpVCEotKEotTs0rSSzJzM8rVkiqVDB20XUsTwTKuWXmpeqGlOYBtfAwsKYl5hSn8kJpbgZlN9cQZw9doJGFpanFJfFZ-aVFeUCpeGMDCzNDEyNDC2Nj4lQBANJBNp8</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Yue, Yuanwen</creator><creator>Das, Anurag</creator><creator>Engelmann, Francis</creator><creator>Tang, Siyu</creator><creator>Lenssen, Jan Eric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240729</creationdate><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><author>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30861421833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Representations</topic><topic>Semantic segmentation</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue, Yuanwen</creatorcontrib><creatorcontrib>Das, Anurag</creatorcontrib><creatorcontrib>Engelmann, Francis</creatorcontrib><creatorcontrib>Tang, Siyu</creatorcontrib><creatorcontrib>Lenssen, Jan Eric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Yuanwen</au><au>Das, Anurag</au><au>Engelmann, Francis</au><au>Tang, Siyu</au><au>Lenssen, Jan Eric</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3086142183
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Datasets
Representations
Semantic segmentation
Unstructured data
title Improving 2D Feature Representations by 3D-Aware Fine-Tuning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%202D%20Feature%20Representations%20by%203D-Aware%20Fine-Tuning&rft.jtitle=arXiv.org&rft.au=Yue,%20Yuanwen&rft.date=2024-07-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3086142183%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30861421833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086142183&rft_id=info:pmid/&rfr_iscdi=true