Loading…
Improving 2D Feature Representations by 3D-Aware Fine-Tuning
Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yue, Yuanwen Das, Anurag Engelmann, Francis Tang, Siyu Lenssen, Jan Eric |
description | Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3086142183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086142183</sourcerecordid><originalsourceid>FETCH-proquest_journals_30861421833</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8cwtKMovy8xLVzByUXBLTSwpLUpVCEotKEotTs0rSSzJzM8rVkiqVDB20XUsTwTKuWXmpeqGlOYBtfAwsKYl5hSn8kJpbgZlN9cQZw9doJGFpanFJfFZ-aVFeUCpeGMDCzNDEyNDC2Nj4lQBANJBNp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086142183</pqid></control><display><type>article</type><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</creator><creatorcontrib>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</creatorcontrib><description>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Representations ; Semantic segmentation ; Unstructured data</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3086142183?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Yue, Yuanwen</creatorcontrib><creatorcontrib>Das, Anurag</creatorcontrib><creatorcontrib>Engelmann, Francis</creatorcontrib><creatorcontrib>Tang, Siyu</creatorcontrib><creatorcontrib>Lenssen, Jan Eric</creatorcontrib><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><title>arXiv.org</title><description>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</description><subject>Datasets</subject><subject>Representations</subject><subject>Semantic segmentation</subject><subject>Unstructured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8cwtKMovy8xLVzByUXBLTSwpLUpVCEotKEotTs0rSSzJzM8rVkiqVDB20XUsTwTKuWXmpeqGlOYBtfAwsKYl5hSn8kJpbgZlN9cQZw9doJGFpanFJfFZ-aVFeUCpeGMDCzNDEyNDC2Nj4lQBANJBNp8</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Yue, Yuanwen</creator><creator>Das, Anurag</creator><creator>Engelmann, Francis</creator><creator>Tang, Siyu</creator><creator>Lenssen, Jan Eric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240729</creationdate><title>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</title><author>Yue, Yuanwen ; Das, Anurag ; Engelmann, Francis ; Tang, Siyu ; Lenssen, Jan Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30861421833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Representations</topic><topic>Semantic segmentation</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue, Yuanwen</creatorcontrib><creatorcontrib>Das, Anurag</creatorcontrib><creatorcontrib>Engelmann, Francis</creatorcontrib><creatorcontrib>Tang, Siyu</creatorcontrib><creatorcontrib>Lenssen, Jan Eric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Yuanwen</au><au>Das, Anurag</au><au>Engelmann, Francis</au><au>Tang, Siyu</au><au>Lenssen, Jan Eric</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving 2D Feature Representations by 3D-Aware Fine-Tuning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page: https://ywyue.github.io/FiT3D.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3086142183 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Datasets Representations Semantic segmentation Unstructured data |
title | Improving 2D Feature Representations by 3D-Aware Fine-Tuning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%202D%20Feature%20Representations%20by%203D-Aware%20Fine-Tuning&rft.jtitle=arXiv.org&rft.au=Yue,%20Yuanwen&rft.date=2024-07-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3086142183%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30861421833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086142183&rft_id=info:pmid/&rfr_iscdi=true |