Loading…
Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping
This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3 + Nbss (Nb solid solution) eutectic cells....
Saved in:
Published in: | Rare metals 2024-09, Vol.43 (9), p.4508-4520 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223 |
container_end_page | 4520 |
container_issue | 9 |
container_start_page | 4508 |
container_title | Rare metals |
container_volume | 43 |
creator | Wei, Wei Wang, Qi Chen, Rui-Run Zheng, Chao-Wen Su, Yan-Qing |
description | This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb
5
Si
3
phase and the Nb
5
Si
3
+ Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the
K
Q
value is 18.03 MPa·m
1/2
, which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho
2
O
3
in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm
2
, which is 39.7% lower than that of the base alloy.
Graphical abstract |
doi_str_mv | 10.1007/s12598-024-02765-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086898044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086898044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBXbOeIqkKRKjgAZyt2nDYVtYOdIuXGP_CHfAlug8SNw2pH2pnZ3QHgkuBrgrG8SYQWpUKY8lxSFGg4AhOihESSqOI4Y4wJwgUlp-AspQ3GnAuBJ8DO_bry1m2d72FooA3bLrq186n9cLCLoXOxb13azx7N9-fXcwtNlVwNW49S2-8OipBR5pgBLgKMVXTQVbFfwzp0rV-dg5Omekvu4rdPwevd_GW2QMun-4fZ7RJZinGPBHW8JNZSQkpXGVPUjZQN45gKoZghNbGGSSWl4JKWvFSS15xJWhDDyoZSNgVXo28--33nUq83YRd9XqkZVkKVKn-dWXRk2RhSiq7RXWy3VRw0wXofph7D1DlMfQhTD1nERlHKZL9y8c_6H9UP-B14WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086898044</pqid></control><display><type>article</type><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><source>Springer Link</source><creator>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</creator><creatorcontrib>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</creatorcontrib><description>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb
5
Si
3
phase and the Nb
5
Si
3
+ Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the
K
Q
value is 18.03 MPa·m
1/2
, which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho
2
O
3
in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm
2
, which is 39.7% lower than that of the base alloy.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-024-02765-y</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alloys ; Biomaterials ; Chemistry and Materials Science ; Doping ; Energy ; Eutectic alloys ; Materials Engineering ; Materials Science ; Mechanical properties ; Metallic Materials ; Molecular composites ; Nanoscale Science and Technology ; Original Article ; Oxidation ; Oxidation resistance ; Oxygen ; Particulate composites ; Physical Chemistry ; Plastic deformation ; Room temperature ; Solid solutions ; Solidification ; Toughness</subject><ispartof>Rare metals, 2024-09, Vol.43 (9), p.4508-4520</ispartof><rights>Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</cites><orcidid>0000-0002-4207-189X ; 0000-0003-3695-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Rui-Run</creatorcontrib><creatorcontrib>Zheng, Chao-Wen</creatorcontrib><creatorcontrib>Su, Yan-Qing</creatorcontrib><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb
5
Si
3
phase and the Nb
5
Si
3
+ Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the
K
Q
value is 18.03 MPa·m
1/2
, which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho
2
O
3
in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm
2
, which is 39.7% lower than that of the base alloy.
Graphical abstract</description><subject>Alloys</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Energy</subject><subject>Eutectic alloys</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Molecular composites</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Particulate composites</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Room temperature</subject><subject>Solid solutions</subject><subject>Solidification</subject><subject>Toughness</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBXbOeIqkKRKjgAZyt2nDYVtYOdIuXGP_CHfAlug8SNw2pH2pnZ3QHgkuBrgrG8SYQWpUKY8lxSFGg4AhOihESSqOI4Y4wJwgUlp-AspQ3GnAuBJ8DO_bry1m2d72FooA3bLrq186n9cLCLoXOxb13azx7N9-fXcwtNlVwNW49S2-8OipBR5pgBLgKMVXTQVbFfwzp0rV-dg5Omekvu4rdPwevd_GW2QMun-4fZ7RJZinGPBHW8JNZSQkpXGVPUjZQN45gKoZghNbGGSSWl4JKWvFSS15xJWhDDyoZSNgVXo28--33nUq83YRd9XqkZVkKVKn-dWXRk2RhSiq7RXWy3VRw0wXofph7D1DlMfQhTD1nERlHKZL9y8c_6H9UP-B14WQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wei, Wei</creator><creator>Wang, Qi</creator><creator>Chen, Rui-Run</creator><creator>Zheng, Chao-Wen</creator><creator>Su, Yan-Qing</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4207-189X</orcidid><orcidid>https://orcid.org/0000-0003-3695-997X</orcidid></search><sort><creationdate>20240901</creationdate><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><author>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Energy</topic><topic>Eutectic alloys</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Molecular composites</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Particulate composites</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Room temperature</topic><topic>Solid solutions</topic><topic>Solidification</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Rui-Run</creatorcontrib><creatorcontrib>Zheng, Chao-Wen</creatorcontrib><creatorcontrib>Su, Yan-Qing</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Wang, Qi</au><au>Chen, Rui-Run</au><au>Zheng, Chao-Wen</au><au>Su, Yan-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>4508</spage><epage>4520</epage><pages>4508-4520</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb
5
Si
3
phase and the Nb
5
Si
3
+ Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the
K
Q
value is 18.03 MPa·m
1/2
, which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho
2
O
3
in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm
2
, which is 39.7% lower than that of the base alloy.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-024-02765-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4207-189X</orcidid><orcidid>https://orcid.org/0000-0003-3695-997X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2024-09, Vol.43 (9), p.4508-4520 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_3086898044 |
source | Springer Link |
subjects | Alloys Biomaterials Chemistry and Materials Science Doping Energy Eutectic alloys Materials Engineering Materials Science Mechanical properties Metallic Materials Molecular composites Nanoscale Science and Technology Original Article Oxidation Oxidation resistance Oxygen Particulate composites Physical Chemistry Plastic deformation Room temperature Solid solutions Solidification Toughness |
title | Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20comprehensive%20properties%20of%20Nb%E2%80%93Si%20based%20in-situ%20composites%20by%20Ho%20rare%20earth%20doping&rft.jtitle=Rare%20metals&rft.au=Wei,%20Wei&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=4508&rft.epage=4520&rft.pages=4508-4520&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-024-02765-y&rft_dat=%3Cproquest_cross%3E3086898044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086898044&rft_id=info:pmid/&rfr_iscdi=true |