Loading…

Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping

This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3  + Nbss (Nb solid solution) eutectic cells....

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2024-09, Vol.43 (9), p.4508-4520
Main Authors: Wei, Wei, Wang, Qi, Chen, Rui-Run, Zheng, Chao-Wen, Su, Yan-Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223
container_end_page 4520
container_issue 9
container_start_page 4508
container_title Rare metals
container_volume 43
creator Wei, Wei
Wang, Qi
Chen, Rui-Run
Zheng, Chao-Wen
Su, Yan-Qing
description This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3  + Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the K Q value is 18.03 MPa·m 1/2 , which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho 2 O 3 in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm 2 , which is 39.7% lower than that of the base alloy. Graphical abstract
doi_str_mv 10.1007/s12598-024-02765-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086898044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086898044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBXbOeIqkKRKjgAZyt2nDYVtYOdIuXGP_CHfAlug8SNw2pH2pnZ3QHgkuBrgrG8SYQWpUKY8lxSFGg4AhOihESSqOI4Y4wJwgUlp-AspQ3GnAuBJ8DO_bry1m2d72FooA3bLrq186n9cLCLoXOxb13azx7N9-fXcwtNlVwNW49S2-8OipBR5pgBLgKMVXTQVbFfwzp0rV-dg5Omekvu4rdPwevd_GW2QMun-4fZ7RJZinGPBHW8JNZSQkpXGVPUjZQN45gKoZghNbGGSSWl4JKWvFSS15xJWhDDyoZSNgVXo28--33nUq83YRd9XqkZVkKVKn-dWXRk2RhSiq7RXWy3VRw0wXofph7D1DlMfQhTD1nERlHKZL9y8c_6H9UP-B14WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086898044</pqid></control><display><type>article</type><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><source>Springer Link</source><creator>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</creator><creatorcontrib>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</creatorcontrib><description>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3  + Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the K Q value is 18.03 MPa·m 1/2 , which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho 2 O 3 in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm 2 , which is 39.7% lower than that of the base alloy. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-024-02765-y</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alloys ; Biomaterials ; Chemistry and Materials Science ; Doping ; Energy ; Eutectic alloys ; Materials Engineering ; Materials Science ; Mechanical properties ; Metallic Materials ; Molecular composites ; Nanoscale Science and Technology ; Original Article ; Oxidation ; Oxidation resistance ; Oxygen ; Particulate composites ; Physical Chemistry ; Plastic deformation ; Room temperature ; Solid solutions ; Solidification ; Toughness</subject><ispartof>Rare metals, 2024-09, Vol.43 (9), p.4508-4520</ispartof><rights>Youke Publishing Co.,Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</cites><orcidid>0000-0002-4207-189X ; 0000-0003-3695-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Rui-Run</creatorcontrib><creatorcontrib>Zheng, Chao-Wen</creatorcontrib><creatorcontrib>Su, Yan-Qing</creatorcontrib><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3  + Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the K Q value is 18.03 MPa·m 1/2 , which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho 2 O 3 in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm 2 , which is 39.7% lower than that of the base alloy. Graphical abstract</description><subject>Alloys</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Energy</subject><subject>Eutectic alloys</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Molecular composites</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Particulate composites</subject><subject>Physical Chemistry</subject><subject>Plastic deformation</subject><subject>Room temperature</subject><subject>Solid solutions</subject><subject>Solidification</subject><subject>Toughness</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBXbOeIqkKRKjgAZyt2nDYVtYOdIuXGP_CHfAlug8SNw2pH2pnZ3QHgkuBrgrG8SYQWpUKY8lxSFGg4AhOihESSqOI4Y4wJwgUlp-AspQ3GnAuBJ8DO_bry1m2d72FooA3bLrq186n9cLCLoXOxb13azx7N9-fXcwtNlVwNW49S2-8OipBR5pgBLgKMVXTQVbFfwzp0rV-dg5Omekvu4rdPwevd_GW2QMun-4fZ7RJZinGPBHW8JNZSQkpXGVPUjZQN45gKoZghNbGGSSWl4JKWvFSS15xJWhDDyoZSNgVXo28--33nUq83YRd9XqkZVkKVKn-dWXRk2RhSiq7RXWy3VRw0wXofph7D1DlMfQhTD1nERlHKZL9y8c_6H9UP-B14WQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wei, Wei</creator><creator>Wang, Qi</creator><creator>Chen, Rui-Run</creator><creator>Zheng, Chao-Wen</creator><creator>Su, Yan-Qing</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4207-189X</orcidid><orcidid>https://orcid.org/0000-0003-3695-997X</orcidid></search><sort><creationdate>20240901</creationdate><title>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</title><author>Wei, Wei ; Wang, Qi ; Chen, Rui-Run ; Zheng, Chao-Wen ; Su, Yan-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Energy</topic><topic>Eutectic alloys</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Molecular composites</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Particulate composites</topic><topic>Physical Chemistry</topic><topic>Plastic deformation</topic><topic>Room temperature</topic><topic>Solid solutions</topic><topic>Solidification</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Rui-Run</creatorcontrib><creatorcontrib>Zheng, Chao-Wen</creatorcontrib><creatorcontrib>Su, Yan-Qing</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Wang, Qi</au><au>Chen, Rui-Run</au><au>Zheng, Chao-Wen</au><au>Su, Yan-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>4508</spage><epage>4520</epage><pages>4508-4520</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>This study examines the microstructure, mechanical properties (with a focus on room-temperature toughness), and oxidation resistance of Ho-doped Nb–Si based in-situ composites. The base alloy consists of the coarse primary Nb 5 Si 3 phase and the Nb 5 Si 3  + Nbss (Nb solid solution) eutectic cells. Ho doping influences the solidification path. When the Ho doping is higher than 0.2 at%, the alloys transform into eutectic alloys. Ho can be solid-solved in trace amounts in the Nbss phase. However, most of Ho forms a stable Ho oxide phase, which alleviates oxygen contamination problem to some extent. Moreover, the interface separation between Ho oxide and other phases reduces the plastic deformation constraint. Thus, with 0.4 at% Ho doping, the K Q value is 18.03 MPa·m 1/2 , which is 31.1% higher than that of the base alloy. The strength of the Ho-doped alloys does not deteriorate with an increase in toughness. However, the large network-like Ho 2 O 3 in the 0.8Ho alloy causes a decrease in toughness and strength. In addition, the Ho oxide phase effectively blocks the inward oxygen intrusion. With 0.8 at% Ho doping, the oxidation mass gain per unit area is 10.16 mg·cm 2 , which is 39.7% lower than that of the base alloy. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-024-02765-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4207-189X</orcidid><orcidid>https://orcid.org/0000-0003-3695-997X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2024-09, Vol.43 (9), p.4508-4520
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_3086898044
source Springer Link
subjects Alloys
Biomaterials
Chemistry and Materials Science
Doping
Energy
Eutectic alloys
Materials Engineering
Materials Science
Mechanical properties
Metallic Materials
Molecular composites
Nanoscale Science and Technology
Original Article
Oxidation
Oxidation resistance
Oxygen
Particulate composites
Physical Chemistry
Plastic deformation
Room temperature
Solid solutions
Solidification
Toughness
title Enhancement of comprehensive properties of Nb–Si based in-situ composites by Ho rare earth doping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20comprehensive%20properties%20of%20Nb%E2%80%93Si%20based%20in-situ%20composites%20by%20Ho%20rare%20earth%20doping&rft.jtitle=Rare%20metals&rft.au=Wei,%20Wei&rft.date=2024-09-01&rft.volume=43&rft.issue=9&rft.spage=4508&rft.epage=4520&rft.pages=4508-4520&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-024-02765-y&rft_dat=%3Cproquest_cross%3E3086898044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-62e491cc2119eabb5df77f34026683b1d1cb378776472949874d437251b39f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086898044&rft_id=info:pmid/&rfr_iscdi=true