Loading…

A meshless stochastic method for Poisson–Nernst–Planck equations

A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differen...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-08, Vol.161 (5)
Main Authors: Monteiro, Henrique B. N., Tartakovsky, Daniel M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3
container_end_page
container_issue 5
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Monteiro, Henrique B. N.
Tartakovsky, Daniel M.
description A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.
doi_str_mv 10.1063/5.0223018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087001823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086956687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCnnOLGdsSp_JQQdYI5cx1ZT0rjNOQMb78Ab8iS4tDAwMN3p9NOn00fIMYUhBc4usyEkCQMqd0ifgsxjwXPYJX2AhMY5B94jB4hzAKAiSfdJj-UghcxFn1yNooXBWW0QI_ROzxT6Soebn7kysq6NJq5CdM3n-8ejaRv0YZnUqtGvkVl1yleuwUOyZ1WN5mg7B-Tl5vp5fBc_PN3ej0cPsU6Y9HFJMztNM6oYtZlMFKeaWgpJqjPD87SUWmjLSymMVFCmmiprBVdCGCpsxko2IGeb3GXrVp1BXywq1KYO7xjXYcFA8jzjXIpAT__QuevaJny3ViI0IRMW1PlG6dYhtsYWy7ZaqPatoFCsqy2yYlttsCfbxG66MOWv_OkygIsNQF3572L-SfsC_u6Bng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087001823</pqid></control><display><type>article</type><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</creator><creatorcontrib>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</creatorcontrib><description>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0223018</identifier><identifier>PMID: 39087897</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charged particles ; Computational efficiency ; Computing costs ; Diffusion rate ; Drift ; Green's functions ; Meshless methods ; Multipoles ; Partial differential equations ; Transport phenomena</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</cites><orcidid>0000-0001-9019-8935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0223018$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39087897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, Henrique B. N.</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</description><subject>Charged particles</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Diffusion rate</subject><subject>Drift</subject><subject>Green's functions</subject><subject>Meshless methods</subject><subject>Multipoles</subject><subject>Partial differential equations</subject><subject>Transport phenomena</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCnnOLGdsSp_JQQdYI5cx1ZT0rjNOQMb78Ab8iS4tDAwMN3p9NOn00fIMYUhBc4usyEkCQMqd0ifgsxjwXPYJX2AhMY5B94jB4hzAKAiSfdJj-UghcxFn1yNooXBWW0QI_ROzxT6Soebn7kysq6NJq5CdM3n-8ejaRv0YZnUqtGvkVl1yleuwUOyZ1WN5mg7B-Tl5vp5fBc_PN3ej0cPsU6Y9HFJMztNM6oYtZlMFKeaWgpJqjPD87SUWmjLSymMVFCmmiprBVdCGCpsxko2IGeb3GXrVp1BXywq1KYO7xjXYcFA8jzjXIpAT__QuevaJny3ViI0IRMW1PlG6dYhtsYWy7ZaqPatoFCsqy2yYlttsCfbxG66MOWv_OkygIsNQF3572L-SfsC_u6Bng</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Monteiro, Henrique B. N.</creator><creator>Tartakovsky, Daniel M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid></search><sort><creationdate>20240807</creationdate><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><author>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charged particles</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Diffusion rate</topic><topic>Drift</topic><topic>Green's functions</topic><topic>Meshless methods</topic><topic>Multipoles</topic><topic>Partial differential equations</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Henrique B. N.</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Henrique B. N.</au><au>Tartakovsky, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless stochastic method for Poisson–Nernst–Planck equations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>161</volume><issue>5</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39087897</pmid><doi>10.1063/5.0223018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-08, Vol.161 (5)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_journals_3087001823
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Charged particles
Computational efficiency
Computing costs
Diffusion rate
Drift
Green's functions
Meshless methods
Multipoles
Partial differential equations
Transport phenomena
title A meshless stochastic method for Poisson–Nernst–Planck equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20stochastic%20method%20for%20Poisson%E2%80%93Nernst%E2%80%93Planck%20equations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Monteiro,%20Henrique%20B.%20N.&rft.date=2024-08-07&rft.volume=161&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0223018&rft_dat=%3Cproquest_cross%3E3086956687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087001823&rft_id=info:pmid/39087897&rfr_iscdi=true