Loading…
A meshless stochastic method for Poisson–Nernst–Planck equations
A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differen...
Saved in:
Published in: | The Journal of chemical physics 2024-08, Vol.161 (5) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Monteiro, Henrique B. N. Tartakovsky, Daniel M. |
description | A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver. |
doi_str_mv | 10.1063/5.0223018 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087001823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086956687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCnnOLGdsSp_JQQdYI5cx1ZT0rjNOQMb78Ab8iS4tDAwMN3p9NOn00fIMYUhBc4usyEkCQMqd0ifgsxjwXPYJX2AhMY5B94jB4hzAKAiSfdJj-UghcxFn1yNooXBWW0QI_ROzxT6Soebn7kysq6NJq5CdM3n-8ejaRv0YZnUqtGvkVl1yleuwUOyZ1WN5mg7B-Tl5vp5fBc_PN3ej0cPsU6Y9HFJMztNM6oYtZlMFKeaWgpJqjPD87SUWmjLSymMVFCmmiprBVdCGCpsxko2IGeb3GXrVp1BXywq1KYO7xjXYcFA8jzjXIpAT__QuevaJny3ViI0IRMW1PlG6dYhtsYWy7ZaqPatoFCsqy2yYlttsCfbxG66MOWv_OkygIsNQF3572L-SfsC_u6Bng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087001823</pqid></control><display><type>article</type><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</creator><creatorcontrib>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</creatorcontrib><description>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0223018</identifier><identifier>PMID: 39087897</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charged particles ; Computational efficiency ; Computing costs ; Diffusion rate ; Drift ; Green's functions ; Meshless methods ; Multipoles ; Partial differential equations ; Transport phenomena</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</cites><orcidid>0000-0001-9019-8935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0223018$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39087897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monteiro, Henrique B. N.</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</description><subject>Charged particles</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Diffusion rate</subject><subject>Drift</subject><subject>Green's functions</subject><subject>Meshless methods</subject><subject>Multipoles</subject><subject>Partial differential equations</subject><subject>Transport phenomena</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgWgpDLwAisQCSCnnOLGdsSp_JQQdYI5cx1ZT0rjNOQMb78Ab8iS4tDAwMN3p9NOn00fIMYUhBc4usyEkCQMqd0ifgsxjwXPYJX2AhMY5B94jB4hzAKAiSfdJj-UghcxFn1yNooXBWW0QI_ROzxT6Soebn7kysq6NJq5CdM3n-8ejaRv0YZnUqtGvkVl1yleuwUOyZ1WN5mg7B-Tl5vp5fBc_PN3ej0cPsU6Y9HFJMztNM6oYtZlMFKeaWgpJqjPD87SUWmjLSymMVFCmmiprBVdCGCpsxko2IGeb3GXrVp1BXywq1KYO7xjXYcFA8jzjXIpAT__QuevaJny3ViI0IRMW1PlG6dYhtsYWy7ZaqPatoFCsqy2yYlttsCfbxG66MOWv_OkygIsNQF3572L-SfsC_u6Bng</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Monteiro, Henrique B. N.</creator><creator>Tartakovsky, Daniel M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid></search><sort><creationdate>20240807</creationdate><title>A meshless stochastic method for Poisson–Nernst–Planck equations</title><author>Monteiro, Henrique B. N. ; Tartakovsky, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charged particles</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Diffusion rate</topic><topic>Drift</topic><topic>Green's functions</topic><topic>Meshless methods</topic><topic>Multipoles</topic><topic>Partial differential equations</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Henrique B. N.</creatorcontrib><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Henrique B. N.</au><au>Tartakovsky, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless stochastic method for Poisson–Nernst–Planck equations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>161</volume><issue>5</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson–Nernst–Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift–diffusion process with time- and space-varying drift. We leverage Green’s functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method’s convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39087897</pmid><doi>10.1063/5.0223018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-08, Vol.161 (5) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_3087001823 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Charged particles Computational efficiency Computing costs Diffusion rate Drift Green's functions Meshless methods Multipoles Partial differential equations Transport phenomena |
title | A meshless stochastic method for Poisson–Nernst–Planck equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20stochastic%20method%20for%20Poisson%E2%80%93Nernst%E2%80%93Planck%20equations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Monteiro,%20Henrique%20B.%20N.&rft.date=2024-08-07&rft.volume=161&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0223018&rft_dat=%3Cproquest_cross%3E3086956687%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-d15fb451a31f582a61c1f1024c5e694d8c7cf6d87e8a0d4c1aff76a77e17f53d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087001823&rft_id=info:pmid/39087897&rfr_iscdi=true |