Loading…

Zero Shot Health Trajectory Prediction Using Transformer

Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for analy...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: Renc, Pawel, Jia, Yugang, Samir, Anthony E, Was, Jaroslaw, Li, Quanzheng, Bates, David W, Sitek, Arkadiusz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Renc, Pawel
Jia, Yugang
Samir, Anthony E
Was, Jaroslaw
Li, Quanzheng
Bates, David W
Sitek, Arkadiusz
description Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for analyzing high-dimensional, heterogeneous, and episodic health data. ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories, leveraging a zero-shot learning approach. ETHOS represents a significant advancement in foundation model development for healthcare analytics, eliminating the need for labeled data and model fine-tuning. Its ability to simulate various treatment pathways and consider patient-specific factors positions ETHOS as a tool for care optimization and addressing biases in healthcare delivery. Future developments will expand ETHOS' capabilities to incorporate a wider range of data types and data sources. Our work demonstrates a pathway toward accelerated AI development and deployment in healthcare.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087029741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087029741</sourcerecordid><originalsourceid>FETCH-proquest_journals_30870297413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwiEotylcIzsgvUfBITcwpyVAIKUrMSk0uyS-qVAgoSk3JTC7JzM9TCC3OzEsHyeUVp-UX5aYW8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBhbmBkaW5iaExcaoASRw2NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087029741</pqid></control><display><type>article</type><title>Zero Shot Health Trajectory Prediction Using Transformer</title><source>Publicly Available Content Database</source><creator>Renc, Pawel ; Jia, Yugang ; Samir, Anthony E ; Was, Jaroslaw ; Li, Quanzheng ; Bates, David W ; Sitek, Arkadiusz</creator><creatorcontrib>Renc, Pawel ; Jia, Yugang ; Samir, Anthony E ; Was, Jaroslaw ; Li, Quanzheng ; Bates, David W ; Sitek, Arkadiusz</creatorcontrib><description>Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for analyzing high-dimensional, heterogeneous, and episodic health data. ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories, leveraging a zero-shot learning approach. ETHOS represents a significant advancement in foundation model development for healthcare analytics, eliminating the need for labeled data and model fine-tuning. Its ability to simulate various treatment pathways and consider patient-specific factors positions ETHOS as a tool for care optimization and addressing biases in healthcare delivery. Future developments will expand ETHOS' capabilities to incorporate a wider range of data types and data sources. Our work demonstrates a pathway toward accelerated AI development and deployment in healthcare.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cost analysis ; Data analysis ; Deep learning ; Dimensional analysis ; Health care ; Machine learning ; Trajectory analysis ; Transformers ; Zero-shot learning</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3087029741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Renc, Pawel</creatorcontrib><creatorcontrib>Jia, Yugang</creatorcontrib><creatorcontrib>Samir, Anthony E</creatorcontrib><creatorcontrib>Was, Jaroslaw</creatorcontrib><creatorcontrib>Li, Quanzheng</creatorcontrib><creatorcontrib>Bates, David W</creatorcontrib><creatorcontrib>Sitek, Arkadiusz</creatorcontrib><title>Zero Shot Health Trajectory Prediction Using Transformer</title><title>arXiv.org</title><description>Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for analyzing high-dimensional, heterogeneous, and episodic health data. ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories, leveraging a zero-shot learning approach. ETHOS represents a significant advancement in foundation model development for healthcare analytics, eliminating the need for labeled data and model fine-tuning. Its ability to simulate various treatment pathways and consider patient-specific factors positions ETHOS as a tool for care optimization and addressing biases in healthcare delivery. Future developments will expand ETHOS' capabilities to incorporate a wider range of data types and data sources. Our work demonstrates a pathway toward accelerated AI development and deployment in healthcare.</description><subject>Cost analysis</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Dimensional analysis</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Trajectory analysis</subject><subject>Transformers</subject><subject>Zero-shot learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwiEotylcIzsgvUfBITcwpyVAIKUrMSk0uyS-qVAgoSk3JTC7JzM9TCC3OzEsHyeUVp-UX5aYW8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvLGBhbmBkaW5iaExcaoASRw2NA</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Renc, Pawel</creator><creator>Jia, Yugang</creator><creator>Samir, Anthony E</creator><creator>Was, Jaroslaw</creator><creator>Li, Quanzheng</creator><creator>Bates, David W</creator><creator>Sitek, Arkadiusz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240730</creationdate><title>Zero Shot Health Trajectory Prediction Using Transformer</title><author>Renc, Pawel ; Jia, Yugang ; Samir, Anthony E ; Was, Jaroslaw ; Li, Quanzheng ; Bates, David W ; Sitek, Arkadiusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30870297413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cost analysis</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Dimensional analysis</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Trajectory analysis</topic><topic>Transformers</topic><topic>Zero-shot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Renc, Pawel</creatorcontrib><creatorcontrib>Jia, Yugang</creatorcontrib><creatorcontrib>Samir, Anthony E</creatorcontrib><creatorcontrib>Was, Jaroslaw</creatorcontrib><creatorcontrib>Li, Quanzheng</creatorcontrib><creatorcontrib>Bates, David W</creatorcontrib><creatorcontrib>Sitek, Arkadiusz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renc, Pawel</au><au>Jia, Yugang</au><au>Samir, Anthony E</au><au>Was, Jaroslaw</au><au>Li, Quanzheng</au><au>Bates, David W</au><au>Sitek, Arkadiusz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Zero Shot Health Trajectory Prediction Using Transformer</atitle><jtitle>arXiv.org</jtitle><date>2024-07-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Integrating modern machine learning and clinical decision-making has great promise for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer deep-learning architecture for analyzing high-dimensional, heterogeneous, and episodic health data. ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories, leveraging a zero-shot learning approach. ETHOS represents a significant advancement in foundation model development for healthcare analytics, eliminating the need for labeled data and model fine-tuning. Its ability to simulate various treatment pathways and consider patient-specific factors positions ETHOS as a tool for care optimization and addressing biases in healthcare delivery. Future developments will expand ETHOS' capabilities to incorporate a wider range of data types and data sources. Our work demonstrates a pathway toward accelerated AI development and deployment in healthcare.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3087029741
source Publicly Available Content Database
subjects Cost analysis
Data analysis
Deep learning
Dimensional analysis
Health care
Machine learning
Trajectory analysis
Transformers
Zero-shot learning
title Zero Shot Health Trajectory Prediction Using Transformer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Zero%20Shot%20Health%20Trajectory%20Prediction%20Using%20Transformer&rft.jtitle=arXiv.org&rft.au=Renc,%20Pawel&rft.date=2024-07-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3087029741%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30870297413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087029741&rft_id=info:pmid/&rfr_iscdi=true