Loading…

Data Contamination Report from the 2024 CONDA Shared Task

The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising eval...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-08
Main Authors: Sainz, Oscar, García-Ferrero, Iker, Jacovi, Alon, Jon Ander Campos, Yanai Elazar, Agirre, Eneko, Goldberg, Yoav, Wei-Lin, Chen, Chim, Jenny, Leshem Choshen, D'Amico-Wong, Luca, Dell, Melissa, Fan, Run-Ze, Golchin, Shahriar, Li, Yucheng, Liu, Pengfei, Pahwa, Bhavish, Prabhu, Ameya, Sharma, Suryansh, Silcock, Emily, Solonko, Kateryna, Stap, David, Surdeanu, Mihai, Yu-Min, Tseng, Udandarao, Vishaal, Wang, Zengzhi, Xu, Ruijie, Yang, Jinglin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sainz, Oscar
García-Ferrero, Iker
Jacovi, Alon
Jon Ander Campos
Yanai Elazar
Agirre, Eneko
Goldberg, Yoav
Wei-Lin, Chen
Chim, Jenny
Leshem Choshen
D'Amico-Wong, Luca
Dell, Melissa
Fan, Run-Ze
Golchin, Shahriar
Li, Yucheng
Liu, Pengfei
Pahwa, Bhavish
Prabhu, Ameya
Sharma, Suryansh
Silcock, Emily
Solonko, Kateryna
Stap, David
Surdeanu, Mihai
Yu-Min, Tseng
Udandarao, Vishaal
Wang, Zengzhi
Xu, Ruijie
Yang, Jinglin
description The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087032837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087032837</sourcerecordid><originalsourceid>FETCH-proquest_journals_30870328373</originalsourceid><addsrcrecordid>eNqNysEKgkAQgOElCJLyHQY6C9uMtnYMLToVlHcZcEUtd213ff869ACd_sP3L0SERLskTxFXIvZ-kFLiXmGWUSQOJQeGwprAY2849NbAXU_WBWidHSF0GlBiCsXtWh7h0bHTDVTsnxuxbPnldfzrWmzPp6q4JJOz71n7UA92duZLNclcScKcFP13fQChwjRm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087032837</pqid></control><display><type>article</type><title>Data Contamination Report from the 2024 CONDA Shared Task</title><source>Publicly Available Content Database</source><creator>Sainz, Oscar ; García-Ferrero, Iker ; Jacovi, Alon ; Jon Ander Campos ; Yanai Elazar ; Agirre, Eneko ; Goldberg, Yoav ; Wei-Lin, Chen ; Chim, Jenny ; Leshem Choshen ; D'Amico-Wong, Luca ; Dell, Melissa ; Fan, Run-Ze ; Golchin, Shahriar ; Li, Yucheng ; Liu, Pengfei ; Pahwa, Bhavish ; Prabhu, Ameya ; Sharma, Suryansh ; Silcock, Emily ; Solonko, Kateryna ; Stap, David ; Surdeanu, Mihai ; Yu-Min, Tseng ; Udandarao, Vishaal ; Wang, Zengzhi ; Xu, Ruijie ; Yang, Jinglin</creator><creatorcontrib>Sainz, Oscar ; García-Ferrero, Iker ; Jacovi, Alon ; Jon Ander Campos ; Yanai Elazar ; Agirre, Eneko ; Goldberg, Yoav ; Wei-Lin, Chen ; Chim, Jenny ; Leshem Choshen ; D'Amico-Wong, Luca ; Dell, Melissa ; Fan, Run-Ze ; Golchin, Shahriar ; Li, Yucheng ; Liu, Pengfei ; Pahwa, Bhavish ; Prabhu, Ameya ; Sharma, Suryansh ; Silcock, Emily ; Solonko, Kateryna ; Stap, David ; Surdeanu, Mihai ; Yu-Min, Tseng ; Udandarao, Vishaal ; Wang, Zengzhi ; Xu, Ruijie ; Yang, Jinglin</creatorcontrib><description>The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contamination ; Natural language processing ; Scale models ; Workshops</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3087032837?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sainz, Oscar</creatorcontrib><creatorcontrib>García-Ferrero, Iker</creatorcontrib><creatorcontrib>Jacovi, Alon</creatorcontrib><creatorcontrib>Jon Ander Campos</creatorcontrib><creatorcontrib>Yanai Elazar</creatorcontrib><creatorcontrib>Agirre, Eneko</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><creatorcontrib>Wei-Lin, Chen</creatorcontrib><creatorcontrib>Chim, Jenny</creatorcontrib><creatorcontrib>Leshem Choshen</creatorcontrib><creatorcontrib>D'Amico-Wong, Luca</creatorcontrib><creatorcontrib>Dell, Melissa</creatorcontrib><creatorcontrib>Fan, Run-Ze</creatorcontrib><creatorcontrib>Golchin, Shahriar</creatorcontrib><creatorcontrib>Li, Yucheng</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Pahwa, Bhavish</creatorcontrib><creatorcontrib>Prabhu, Ameya</creatorcontrib><creatorcontrib>Sharma, Suryansh</creatorcontrib><creatorcontrib>Silcock, Emily</creatorcontrib><creatorcontrib>Solonko, Kateryna</creatorcontrib><creatorcontrib>Stap, David</creatorcontrib><creatorcontrib>Surdeanu, Mihai</creatorcontrib><creatorcontrib>Yu-Min, Tseng</creatorcontrib><creatorcontrib>Udandarao, Vishaal</creatorcontrib><creatorcontrib>Wang, Zengzhi</creatorcontrib><creatorcontrib>Xu, Ruijie</creatorcontrib><creatorcontrib>Yang, Jinglin</creatorcontrib><title>Data Contamination Report from the 2024 CONDA Shared Task</title><title>arXiv.org</title><description>The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.</description><subject>Contamination</subject><subject>Natural language processing</subject><subject>Scale models</subject><subject>Workshops</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgkAQgOElCJLyHQY6C9uMtnYMLToVlHcZcEUtd213ff869ACd_sP3L0SERLskTxFXIvZ-kFLiXmGWUSQOJQeGwprAY2849NbAXU_WBWidHSF0GlBiCsXtWh7h0bHTDVTsnxuxbPnldfzrWmzPp6q4JJOz71n7UA92duZLNclcScKcFP13fQChwjRm</recordid><startdate>20240804</startdate><enddate>20240804</enddate><creator>Sainz, Oscar</creator><creator>García-Ferrero, Iker</creator><creator>Jacovi, Alon</creator><creator>Jon Ander Campos</creator><creator>Yanai Elazar</creator><creator>Agirre, Eneko</creator><creator>Goldberg, Yoav</creator><creator>Wei-Lin, Chen</creator><creator>Chim, Jenny</creator><creator>Leshem Choshen</creator><creator>D'Amico-Wong, Luca</creator><creator>Dell, Melissa</creator><creator>Fan, Run-Ze</creator><creator>Golchin, Shahriar</creator><creator>Li, Yucheng</creator><creator>Liu, Pengfei</creator><creator>Pahwa, Bhavish</creator><creator>Prabhu, Ameya</creator><creator>Sharma, Suryansh</creator><creator>Silcock, Emily</creator><creator>Solonko, Kateryna</creator><creator>Stap, David</creator><creator>Surdeanu, Mihai</creator><creator>Yu-Min, Tseng</creator><creator>Udandarao, Vishaal</creator><creator>Wang, Zengzhi</creator><creator>Xu, Ruijie</creator><creator>Yang, Jinglin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240804</creationdate><title>Data Contamination Report from the 2024 CONDA Shared Task</title><author>Sainz, Oscar ; García-Ferrero, Iker ; Jacovi, Alon ; Jon Ander Campos ; Yanai Elazar ; Agirre, Eneko ; Goldberg, Yoav ; Wei-Lin, Chen ; Chim, Jenny ; Leshem Choshen ; D'Amico-Wong, Luca ; Dell, Melissa ; Fan, Run-Ze ; Golchin, Shahriar ; Li, Yucheng ; Liu, Pengfei ; Pahwa, Bhavish ; Prabhu, Ameya ; Sharma, Suryansh ; Silcock, Emily ; Solonko, Kateryna ; Stap, David ; Surdeanu, Mihai ; Yu-Min, Tseng ; Udandarao, Vishaal ; Wang, Zengzhi ; Xu, Ruijie ; Yang, Jinglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30870328373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contamination</topic><topic>Natural language processing</topic><topic>Scale models</topic><topic>Workshops</topic><toplevel>online_resources</toplevel><creatorcontrib>Sainz, Oscar</creatorcontrib><creatorcontrib>García-Ferrero, Iker</creatorcontrib><creatorcontrib>Jacovi, Alon</creatorcontrib><creatorcontrib>Jon Ander Campos</creatorcontrib><creatorcontrib>Yanai Elazar</creatorcontrib><creatorcontrib>Agirre, Eneko</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><creatorcontrib>Wei-Lin, Chen</creatorcontrib><creatorcontrib>Chim, Jenny</creatorcontrib><creatorcontrib>Leshem Choshen</creatorcontrib><creatorcontrib>D'Amico-Wong, Luca</creatorcontrib><creatorcontrib>Dell, Melissa</creatorcontrib><creatorcontrib>Fan, Run-Ze</creatorcontrib><creatorcontrib>Golchin, Shahriar</creatorcontrib><creatorcontrib>Li, Yucheng</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Pahwa, Bhavish</creatorcontrib><creatorcontrib>Prabhu, Ameya</creatorcontrib><creatorcontrib>Sharma, Suryansh</creatorcontrib><creatorcontrib>Silcock, Emily</creatorcontrib><creatorcontrib>Solonko, Kateryna</creatorcontrib><creatorcontrib>Stap, David</creatorcontrib><creatorcontrib>Surdeanu, Mihai</creatorcontrib><creatorcontrib>Yu-Min, Tseng</creatorcontrib><creatorcontrib>Udandarao, Vishaal</creatorcontrib><creatorcontrib>Wang, Zengzhi</creatorcontrib><creatorcontrib>Xu, Ruijie</creatorcontrib><creatorcontrib>Yang, Jinglin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sainz, Oscar</au><au>García-Ferrero, Iker</au><au>Jacovi, Alon</au><au>Jon Ander Campos</au><au>Yanai Elazar</au><au>Agirre, Eneko</au><au>Goldberg, Yoav</au><au>Wei-Lin, Chen</au><au>Chim, Jenny</au><au>Leshem Choshen</au><au>D'Amico-Wong, Luca</au><au>Dell, Melissa</au><au>Fan, Run-Ze</au><au>Golchin, Shahriar</au><au>Li, Yucheng</au><au>Liu, Pengfei</au><au>Pahwa, Bhavish</au><au>Prabhu, Ameya</au><au>Sharma, Suryansh</au><au>Silcock, Emily</au><au>Solonko, Kateryna</au><au>Stap, David</au><au>Surdeanu, Mihai</au><au>Yu-Min, Tseng</au><au>Udandarao, Vishaal</au><au>Wang, Zengzhi</au><au>Xu, Ruijie</au><au>Yang, Jinglin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data Contamination Report from the 2024 CONDA Shared Task</atitle><jtitle>arXiv.org</jtitle><date>2024-08-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3087032837
source Publicly Available Content Database
subjects Contamination
Natural language processing
Scale models
Workshops
title Data Contamination Report from the 2024 CONDA Shared Task
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20Contamination%20Report%20from%20the%202024%20CONDA%20Shared%20Task&rft.jtitle=arXiv.org&rft.au=Sainz,%20Oscar&rft.date=2024-08-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3087032837%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30870328373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087032837&rft_id=info:pmid/&rfr_iscdi=true