Loading…

An Exact Bound for the Inner Product of Vectors in Cn

An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse C...

Full description

Saved in:
Bibliographic Details
Published in:The American mathematical monthly 2024-08, Vol.131 (7), p.627
Main Author: Pinelis, Iosif
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7
container_start_page 627
container_title The American mathematical monthly
container_volume 131
creator Pinelis, Iosif
description An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.
doi_str_mv 10.1080/00029890.2024.2344412
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3087390326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087390326</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</originalsourceid><addsrcrecordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087390326</pqid></control><display><type>article</type><title>An Exact Bound for the Inner Product of Vectors in Cn</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pinelis, Iosif</creator><creatorcontrib>Pinelis, Iosif</creatorcontrib><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2344412</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Ltd</publisher><subject>Cauchy problems ; Euclidean space ; Income inequality ; Inequality ; Lagrange multiplier ; Linear equations ; Lower bounds ; Upper bounds</subject><ispartof>The American mathematical monthly, 2024-08, Vol.131 (7), p.627</ispartof><rights>Copyright Taylor &amp; Francis Ltd. Jul/Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pinelis, Iosif</creatorcontrib><title>An Exact Bound for the Inner Product of Vectors in Cn</title><title>The American mathematical monthly</title><description>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</description><subject>Cauchy problems</subject><subject>Euclidean space</subject><subject>Income inequality</subject><subject>Inequality</subject><subject>Lagrange multiplier</subject><subject>Linear equations</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotTd1KwzAYDaJgnT6CEPA69UvypU0uZ5lzMNCLzdvRNgk6JJlJCz6-GQoHDueHcwi551Bz0PAIAMJoA7UAgbWQiMjFBam4kcDAtOKSVOcOO5euyU3OxyJBoaiIWga6-unHiT7FOVjqY6LTh6ObEFyibynauWTR03c3TjFl-hloF27Jle-_srv75wXZP6923Qvbvq433XLLTpzLiVllBt3aBkaHWg9jA4ME3XtXHGt6rr3xMBQohxxRo1CgLBjlGoUcrFyQh7_dU4rfs8vT4RjnFMrloQy10oAUjfwFDSFGLA</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Pinelis, Iosif</creator><general>Taylor &amp; Francis Ltd</general><scope>JQ2</scope></search><sort><creationdate>20240808</creationdate><title>An Exact Bound for the Inner Product of Vectors in Cn</title><author>Pinelis, Iosif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cauchy problems</topic><topic>Euclidean space</topic><topic>Income inequality</topic><topic>Inequality</topic><topic>Lagrange multiplier</topic><topic>Linear equations</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinelis, Iosif</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinelis, Iosif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exact Bound for the Inner Product of Vectors in Cn</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-08-08</date><risdate>2024</risdate><volume>131</volume><issue>7</issue><spage>627</spage><pages>627-</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>An exact upper bound of 12 is shown for the difference between the inner product of vectors in Cn. This bound is attained when the vectors are unit vectors. The inequality provided in the proposition can be seen as a lower bound on the modulus of the inner product. It is reminiscent of the reverse Cauchy-Schwarz inequality. The proof of the proposition involves analyzing Lagrange multipliers and finding a clever solution. The case where the vectors are in Rn is considered first, and then the general case with unit vectors in Cn is addressed. The problem is reduced to proving a claim, which is easily proven using the Cauchy-Schwarz inequality. No potential conflict of interest is reported by the author.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/00029890.2024.2344412</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2024-08, Vol.131 (7), p.627
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_3087390326
source Taylor and Francis Science and Technology Collection
subjects Cauchy problems
Euclidean space
Income inequality
Inequality
Lagrange multiplier
Linear equations
Lower bounds
Upper bounds
title An Exact Bound for the Inner Product of Vectors in Cn
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exact%20Bound%20for%20the%20Inner%20Product%20of%20Vectors%20in%20Cn&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Pinelis,%20Iosif&rft.date=2024-08-08&rft.volume=131&rft.issue=7&rft.spage=627&rft.pages=627-&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2344412&rft_dat=%3Cproquest%3E3087390326%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-d59b87d60ce488bc60b308afe60cd9a18f9f0bf0b5e4144842505d095e65410d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087390326&rft_id=info:pmid/&rfr_iscdi=true