Loading…
Flat-band Fulde-Ferrell-Larkin-Ovchinnikov State from Quantum Geometry Discrepancy
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, a finite-momentum superconducting pairing state, has been extensively studied from the perspective of mismatched Fermi surfaces of paired electrons. In this work, we propose a distinctive mechanism to realize FFLO states by creating an imbalance in...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, a finite-momentum superconducting pairing state, has been extensively studied from the perspective of mismatched Fermi surfaces of paired electrons. In this work, we propose a distinctive mechanism to realize FFLO states by creating an imbalance in the quantum geometry of paired electrons on an isolated flat band, which we term "Quantum Geometry Discrepancy (QGD)". Based on a flat-band electronic Hamiltonian with continuously tunable quantum metrics for each spin species, we analytically investigate the QGD-induced FFLO instability near the superconducting critical temperature through the band-projection method. To obtain the phase diagram of the BCS-FFLO transition driven by QGD, we perform numerical calculations using self-consistent mean-field theory, which aligns well with the analytical results. Additionally, we discuss the stability of the flat-band FFLO state when a finite band dispersion is turned on. We point out that QGD serves as a new protocol for stabilizing the FFLO states in flat-band superconductors. |
---|---|
ISSN: | 2331-8422 |