Loading…

A wearable fabric-based speech-generating device: system design and case demonstration

Purpose: Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal w...

Full description

Saved in:
Bibliographic Details
Published in:Disability and rehabilitation: Assistive technology 2019-07, Vol.14 (5), p.434-444
Main Authors: Fleury, Amanda, Wu, Gloria, Chau, Tom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal was to design and test a wearable SGD incorporating resistive textile-based switches for a nonverbal pediatric participant with vision impairment. Materials and methods: Quad-key fabric keypads were designed using two conductive fabrics in combination with felt and mesh insulators. The keypad with the most repeatable low force activations and the least cross-talk among keys was chosen for implementation in a wrist-worn, four-message textile SGD. The fabric-based SGD was used by a nonverbal pediatric participant for two one-week analysis periods, alternating with the user's current device for usage reference. Data were derived from usage logs, parent questionnaires and an end-of-study participant interview. Results: The best performing keypad consisted of two layers of woven conductive fabrics and one layer of insulating felt with 10 mm apertures. Communicative interactions were higher with the fabric-based SGD, particularly at school. Unprompted initiation of communication was observed only with the fabric-based SGD. The persistent availability of the textile solution, along with esthetic appeal likely contributed to its utilization. While the participant preferred the fabric-based SGD, the parent opted for the iPod alternative, citing enhanced message intelligibility. Conclusions: Fabric-based SGDs are a new alternative to conventional SGD designs using rigid electronics. As such, tactile differentiability of keys, device wearability and esthetic personalization may be promising advantages for pediatric users. Implications for rehabilitation Fabric-based switches may be a promising alternative to conventional electro-mechanical switches for the control of speech-generating devices, offering functional (e.g., comfort and tactile differentiability), expressive (e.g., non-stigmatizing textile integration) and esthetic (e.g., colors and textures) appeal. The material combination of two layers of woven conductive material and one insulating layer of felt with 10 mm diameter apertures seems to provide a fabric-based keypad suitable for pediatric use, requiring low-force activation and minimal cross-talk among buttons. Fabric-based devices offer advantages of tactile d
ISSN:1748-3107
1748-3115
DOI:10.1080/17483107.2018.1462860